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Multiplication rather than addition of neural signals is believed to underpin a variety of sensory processes, yet the evidence
for multiplication is rare. Here we provide psychophysical evidence for neural multiplication in human visual processing of
shape. We show that the curvature of a contour is likely detected by a mechanism that multiplies rather than adds the
signals from afferent sub-units that detect parts of the curve. Using a novel perceptual after-effect, in which the perceived
shape of a sinusoidal-shaped contour is altered following adaptation to a contour of slightly different sinusoidal shape, a
pronounced ‘dip’ in the size of the after-effect is found when the adapting contour is broken into segments of a particular
length and spacing. Simulations reveal that the presence and shape of the dip is only expected if the afferent sub-units to
curvature detectors are multiplied. The after-effect itself is then best explained in terms of the population response of a
range of such curvature detectors tuned to different curvatures.

Keywords: curvature, multiplication, adaptation, contour, after-effect

Citation: Gheorghiu, E., & Kingdom, F. A. A. (2009). Multiplication in curvature processing. Journal of Vision, 9(2):23, 1–17,
http://journalofvision.org/9/2/23/, doi:10.1167/9.2.23.

Introduction

A range of visual and auditory processes are believed to
be underpinned by multiplication (Barlow & Levick,
1965; Gabbiani et al., 2004; Gabbiani, Knapp, Koch, &
Laurent, 2002; McAdams & Maunsell, 1999; Peña &
Konishi, 2001; Reichardt, 1957; Salinas & Abbott, 1996;
Sun & Frost, 1998). Multiplication is a form of AND-
gating and can in principle be implemented via a variety
of physiological routes (Koch, 1999; Koch & Poggio,
1992; Mead, 1989). Evidence consistent with multiplica-
tion among visual neurons comes mainly from physio-
logical studies of motion processing (Barlow & Levick,
1965; Gabbiani et al., 2002, 2004; Hassenstein &
Reichardt, 1956; McAdams & Maunsell, 1999; Treue
& Martinez Trujillo, 1999; Treue & Maunsell, 1999).
Multiplication is also featured in a number of models
of visual processes, such as orientation processing
(Wenderoth, Johnstone, & van der Zwan, 1989), stereo-
scopic depth processing (Burke & Wenderoth, 1989),
motion processing (Van Kruysbergen & de Weert, 1994;
van Santen & Sperling, 1985, 1984), and curvature
processing (Poirier & Wilson, 2006; Zetzsche & Barth,
1990). However, there is little psychophysical evidence
for multiplication in vision. Van Santen and Sperling
(1985, 1984) showed how one could identify the direction
of motion of an apparent motion stimulus consisting of
a pair of adjacent vertical bars with different temporal
luminance modulations, even when one bar was sub-
threshold. Van Santen and Sperling interpreted the

finding as evidence for multiplication of the two
component signals.
In this communication we provide evidence for

multiplication in the visual processing of curvature.
Curvature can be defined at each point along a contour as
the rate of change of the slope of the tangent to the
contour with respect to the distance along the contour.
However in the sinusoidal-shaped contours used here, as
with the perturbed-circle radial-frequency patterns com-
monly used elsewhere (Anderson, Habak, Wilkinson, &
Wilson, 2007; Wilkinson, Wilson, & Habak, 1998),
curvature, as so-defined, is not a constant along any
portion of the curve (which is also true if curvature is
defined at each point by 1/radius), unlike for curves that
are co-circular. For this reason we define a ‘curve’ as that
portion of a contour in which curvature (as defined above)
is non-zero everywhere, not necessarily constant, but of
constant sign. A curve defined in this way can be
characterized by its ‘sag’ and ‘cord’ (Gheorghiu &
Kingdom, 2007a, 2008), which leads to a definition of
curvature as (proportional to) the product of sag and cord.
Both the psychophysics and neurophysiological literature
is replete with references to curves, or to the receptive
fields of curvature-sensitive neurons, that are not co-
circular (Pasupathy & Connor, 1999, 2001, 2002), so our
somewhat colloquial definition of curvature is appropriate
to existing notions of what are curves.
Curvature plays an important role in the representation

and recognition of shapes. It is important to bear in mind
from the outset however that models for curvature
detection and discrimination do not necessarily provide
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an account of how curvature is represented in the brain.
Curvature detection (the task of discriminating a curve
from a straight line) and discrimination (the task of
discriminating two curves) is probably accomplished with
a minimum of neural machinery. For example, single unit
recordings in area 17 of the cat visual cortex have shown
that end-stopped cells can discriminate between different
curves (Dobbins, Zucker, & Cynader, 1987, 1989;
Versavel, Orban, & Lagae, 1990). However because end-
stopped neurons are univariant with respect to both short
straight lines and long curved ones, it is unlikely that they
are used to represent curvature. Indeed Zetzsche and Barth
(1990) have shown that the Dobbins et al. end-stopped
model, which involves the nonlinear combination of pairs
of V1 simple-cell-like linear filters with different recep-
tive-field sizes, is unable to fully distinguish between a
straight and a curved contour, even if modified by
common nonlinearities such as rectification, clipping,
and thresholding; although the nonlinearities change the
form of the response to a straight line, they never cause it
to disappear (see Figures 1a and 1b in Zetzsche & Barth,
1990). Another suggested neural mechanism for curvature
discrimination is the comparison of responses from pairs
of orientation-selective V1 simple cells positioned at
different points along the curve (Anzai, Peng, & Van
Essen, 2007; Hedgé & Van Essen, 2000; Kramer & Fahle,
1996; Tyler, 1973; Wilson, 1985; Wilson & Richards,
1989). Again however, this may be insufficient to
represent curvature.
The representation of curvature likely involves more

elaborate neural machinery than that needed for detection
and discrimination and is probably mediated by neurons in
higher visual areas (Connor, Brincat, & Pasupathy, 2007;
Gallant, Braun, & Van Essen, 1993; Gallant, Connor,
Rakshit, Lewis, & Van Essen, 1996; Pasupathy & Connor,
1999, 2001, 2002) that receive inputs from arrays of V1
simple cells whose receptive fields are arranged in a
curvilinear fashion (Gheorghiu & Kingdom, 2007a,
2007b, 2008; Poirier & Wilson, 2006).
We refer to the afferent inputs to a putative curvature

detector as ‘sub-units.’ It has been suggested that the sub-
units of curvature detectors are multiplied rather than
added (Poirier & Wilson, 2006; Zetzsche & Barth, 1990).
Multiplication is an AND-gate-like operation, meaning
that if any of the afferent inputs are inactive the curvature
detector will not respond. However, to our knowledge,
there is no psychophysical or physiological evidence that
curvature detectors have such properties.
The mechanism by which curves are represented, as

opposed to detected and discriminated is arguably best
understood through studies of curvature appearance (Ben-
Shahar & Zucker, 2004; Gheorghiu & Kingdom, 2007a,
2008). This is because the perceived curvature of a
contour is likely signaled via the population response of
curvature-sensitive neurons tuned to different curvatures,
just as perceived orientation is believed to be signaled via
a population response of orientation-sensitive neurons

tuned to different orientations (Dragoi, Sharma, Miller,
& Sur, 2002; Dragoi, Sharma, & Sur, 2000).
An important class of appearance-based psychophysical

tool is the visual after-effect. In a visual after-effect, the
appearance of a stimulus is altered as a result of selective
adaptation to a slightly different stimulus. Such after-
effects are believed to be mediated by the mechanisms
that represent the dimension of interest, in other words via
a population code as described above.
Our evidence for an AND-gate-like operation (i.e.,

multiplication) in curvature processing has emerged from
studies using two recently discovered visual after-effects
of perceived shape: the shape-frequency and shape-
amplitude after-effects, or SFAE and SAAE (Gheorghiu
& Kingdom, 2006, 2007a, 2007b, 2008). The SFAE and
SAAE are the perceived shifts in, respectively, the shape
frequency and shape amplitude of a sinusoidal test contour
following adaptation to a sinusoidal contour of slightly
different shape frequency/shape amplitude. As with other
spatial after-effects such as the tilt after-effect (Gibson,
1933; Magnussen & Kurtenbach, 1980; Wenderoth &
Johnstone, 1988) and the size or luminance–spatial-
frequency after-effect (Blakemore & Sutton, 1969), the
perceived shifts in the SFAE and SAAE are always in a
direction away from that of the adaptation stimulus.
Gheorghiu and Kingdom (2007a) provided evidence

that both the SFAE and SAAE are mediated by mecha-
nisms sensitive to local curvature, rather than to local
orientation or to global shape frequency/shape amplitude.
They found that the perceived shifts induced into
sinusoidal-shaped test contours by both sinusoidal-shaped
and square-wave-shaped adaptors were very similar,
which they argued on geometrical grounds was hard to
explain on the basis of local orientation adaptation.
Additional evidence against local orientation as the adapt-
ing feature is the degree of independence of the SFAE and
SAAE: adaptor shape frequencies have little or no effect on
the perceived shape amplitudes of test contours, and
adaptor shape amplitudes have little or no effect on the
perceived shape frequencies of test contours (Gheorghiu &
Kingdom, 2008). SFAEs and SAAEs are therefore useful
for probing curvature encoding in human vision, as they
presumably result from changes in the shape of the
response distribution of neurons tuned to different curva-
tures, in a manner similar to that proposed for other spatial
after-effects (Clifford, 2002; Georgeson, 2004).
Readers can experience the SFAE and the SAAE in

Figures 1a and 1b. If one moves ones’ eyes back and forth
along the horizontal markers between the pair of adapting
contours on the left for about a minute, and then transfer
one’s gaze to the central spot on the right, the test
contours above and below the fixation dot should appear
to have a different shape frequency (Figure 1a) or a
different shape amplitude (Figure 1b), even though they
are physically identical. An important property of both
after-effects is that they survive shape-phase random-
ization during adaptation, as can be experienced in the
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Figure 1. Stimuli used in the experiments. One can experience (a) the shape-frequency after-effect (SFAE) and (b) the shape-amplitude
after-effect (SAAE) by moving one’s eyes back and forth along the markers located midway between the pair of adapting contours (left) for
about 90 s, and then shifting one’s gaze to the middle of the test contours (right). (c–k) Segmented sine-wave-shaped contours. Segment
length is expressed as the proportion of the length of a single cycle of the contour measured along the path of the contour. The
corresponding segment lengths are: 0.0336, 0.0597, 0.1062, 0.1888, 0.3358, 0.5972, 1.0619, 1.8884, and 3.3581. Tests were all
continuous contours.
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non-static adaptor version at http://www.mvr.mcgill.ca/
Fred/research.htm#contourShapePerception. The reason
for randomizing shape phase during the adaptation period
is to prevent the formation of afterimages and to minimize
the effects of local orientation adaptation. If we assume
that the visual system is tiled with curvature detectors,
then a sine-wave-shaped contour will stimulate roughly
the same number of curvature detectors irrespective of
shape phase, in the same way that a luminance grating
will stimulate roughly the same number of luminance–
spatial-frequency channels irrespective of luminance
phase.
Our hypothesis is that curves are encoded by curvature

detectors that receive input from a small number of
orientation-selective V1 neurons whose responses are
combined by an AND-like operation, such as direct multi-
plication or another operation equivalent to multiplication
(e.g., Log–Exp transform or a saturating nonlinearity
followed by addition and accelerating nonlinearity). We
predict that the response of a curvature detector will be
maximal when all its afferent inputs are stimulated and will
be unresponsive if any of its inputs are not stimulated.
The evidence for multiplication in curvature encoding

has emerged from the use of sinusoidal-shaped contour
adaptors that are broken into segments, with the gap
between segments equal to the segment length. The model
simulations described below reveal that if the sub-units to
a putative curvature detector are multiplied, there is a
pronounced symmetrical dip in the response of the
detector at an intermediate segment/gap length. No other
type of combinatorial non-linearity besides multiplication
(or its mathematical equivalent) predicts such a sym-
metrical dip. We show that a similar-shaped dip is found
psychophysically in both the SFAE and SAAE, when
measured using adaptors of various segment/gap lengths
but continuous test contours. We interpret this result as the
first evidence that the sub-units to curvature detectors are
multiplied.
In what follows we first describe the method for

obtaining the psychophysical data, second the model
simulations that predict the dip in the size of the two
after-effects, and third the psychophysical results that test
for the presence of the dip. Finally we consider whether
other types of non-linear combinations of sub-units can
predict the dip.

Methods

Observers

One of the two authors (EG) and four naive volunteers
(AB, LS, BA, KW) participated in the study. Three of the
subjects (AB, EG, LS) participated in the measurement of
both after-effects. Subject BA participated only in the

measurement of the shape-frequency after-effect, while
subject KW participated only in the measurement of the
shape-amplitude after-effect. All subjects had normal or
corrected-to-normal visual acuity. Each subject gave
informed consent prior to participation in accordance with
the university guidelines.

Stimuli

The stimuli were generated by a VSG2/5 video-graphics
card (Cambridge Research Systems) with 12-bits contrast
resolution, presented on a calibrated, gamma-corrected
Sony Trinitron monitor, running at 120-Hz frame rate and
with a spatial resolution of 1024 � 768 pixels. The mean
luminance of the monitor was 42 cd/m2.
Example stimuli are shown in Figure 1. Adaptation and

test stimuli consisted of pairs of 2D sine-wave-shaped
contours. The two adaptors and tests were presented in the
center of the monitor 3.5 deg above and below the fixation
marker. The cross-sectional luminance profile of the
contours was odd-symmetric and was generated according
to a first derivative of a Gaussian function:

LðdÞ ¼ Lmean T Lmean I C I expð0:5Þ I ðd=AÞ
I exp½jðd2Þ=ð2A2Þ�; ð1Þ

where d is the distance from the midpoint of the contour’s
luminance profile along a line perpendicular to the
tangent, Lmean is mean luminance of 42 cd/m2, C is
contrast, and A is the space constant. C was set to 0.5 and
A to 0.044 deg for all experiments. The T sign determined
the polarity of the contour. Our contours were designed to
have a constant cross-sectional width, and the method we
used to achieve this is described elsewhere (Gheorghiu &
Kingdom, 2006).
The adaptor pair for the SFAE consisted of contours

with a shape amplitude of 0.43 deg and shape frequencies
of 0.25 and 0.75 c/deg, giving a geometric mean shape
frequency of 0.43 c/deg. For the SAAE, the shape
frequency of the adaptor pair was 0.43 c/deg, while the
shape amplitudes were 0.25 and 0.75 deg, giving a
geometric mean of 0.43 deg. The mean shape frequency
and mean shape amplitude of the test contour pair were
always maintained constant at 0.43 c/deg and 0.43 deg,
respectively.
The adaptors were either continuous sine-wave-shaped

contours or segmented sine-wave-shaped contours. In the
segmented contours the segments and gaps were of equal
length. For clarity, we express the segment length as a
proportion of the length of a single cycle of the contour
measured along the path of the contour. We used nine
segment/gap lengths: 0.0336, 0.0597, 0.1062, 0.1888,
0.3358, 0.5972, 1.0619, 1.8884, and 3.3581. The test
was always a continuous sine-wave-shaped contour. In
order that the adapting contours of different shape
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frequency were comparable in terms of their segmented
profiles, the segment length ratio of the two adapting
contours was the same for all segment lengths (remember
segment length is expressed as a proportion of the length
along the path of a single cycle). The segment length ratio
was 0.5098 for the SFAE adaptors and 1.5295 for the
SAAE adaptors.

Procedure

Each session began with an initial adaptation period of
90 s, followed by a repeated test of 0.5 s duration
interspersed with top-up adaptation periods of 2.5 s.
During the adaptation period, the shape phase of the
contour, as well as the phase of the segmentation, was
randomly changed every 0.5 s in order to prevent the
formation of afterimages and to minimize the effects of
local orientation adaptation. The presentation of the test
contour was signaled by a tone. The shape phase of the
test contour was also randomly assigned in every test
period. The display was viewed in a dimly lit room at a
viewing distance of 100 cm. Subjects were required to
fixate on the marker placed between each pair of contours
for the entire session. A head and chin rest helped to
minimize head movements.
A staircase method was used to estimate the point of

subjective equality, or PSE. For the SFAE the geometric
mean shape frequency of the two test contours was held
constant at 0.43 c/deg while the computer varied the
relative shape frequencies of the two tests in accordance
with the subject’s response. At the start of the test period
the ratio of the two test shape frequencies was set to a
random number between 0.33 and 3. On each trial
subjects indicated via a button press whether the upper
or lower test contour had the higher perceived shape
frequency. The computer then changed the ratio of test
shape frequencies by a factor of 1.06 for the first five
trials and 1.015 thereafter, in a direction opposite to that
of the response, i.e., toward the PSE. The session was
terminated after 25 trials. The shape-frequency ratio at
the PSE was calculated as the geometric mean shape-
frequency ratio of the tests adapted, respectively, by the
lower and higher shape-frequency adaptors, averaged
across the last 20 trials. The geometric rather than
arithmetic mean is the appropriate way to average ratios
(e.g., if one experiment yields a ratio of 10,000 and the
other 0.0001, the arithmetic mean misleadingly gives an
average ratio near 5000, whereas the geometric mean
accurately gives a ratio of 1). Six measurements were
made for each condition, three in which the upper
adaptor had the higher shape frequency and three in
which the lower adaptor had the higher shape frequency.
In addition we measured for each condition the shape-

frequency ratio at the PSE in the absence of the adapting
stimulus (the no-adaptor condition). To obtain an estimate of
the size of the SFAE, we calculated, for each with-adaptor

measurement, the difference between two quantities: the
logarithm of the with-adaptor shape-frequency ratio at the
PSE, and the mean logarithm of the no-adaptor shape-
frequency ratio at the PSE.We then calculated the mean and
standard error of these differences across measurements.
These standard errors are the ones shown in the graphs.
The procedure for measuring the SAAE followed the

same principle as for the SFAE. The computer varied the
relative shape amplitudes of the two tests in accordance
with the subject’s response, while the geometric mean
shape amplitude of the two test contours was held constant
at 0.43 deg.

Results

Model

Our hypothesis is that curves are encoded by curvature
detectors that receive input from a small number of
orientation-selective V1 neurons whose responses are
combined by an AND-like operation, such as direct multi-
plication or other operations equivalent to multiplication.
Before showing the psychophysical results, we present a

model that is a simple implementation of our hypothesis.
The model simulates the output of a putative curvature
detector that multiplies the outputs of its sub-units, in
response to a contour divided into segments. The model
reveals an important consequence of multiplication.
Consider a half-cycle, cosine portion of one of the
sinusoidal-shaped contours shown in Figures 1a and 1b.
Assume that a curvature detector receives input from a
small number of sub-units (e.g., four) whose abutting
receptive fields are arranged along a curve, without gaps
or overlap, as shown in Figure 2a. Each sub-unit sums the
energy (e.g., r.m.s. luminance contrast) of the contour that
falls within its receptive field, but the responses of the sub-
units are multiplied. The response of the curvature detector
will be maximal when stimulated by a continuous contour
matched to its global receptive-field structure. The response
however will drop to zero if any of the sub-units are not
stimulated, as multiplication of any number by zero always
equals zero. This fact is the reason for using the segmented
contours shown in Figures 1c–1k. The contours in the
simulation are of various segment lengths, with the
constraint that the gap between segments is always equal
to the length of the segment, such that the overall amount
of contour energy is the same in every segment length
condition. For the model simulation, segment length is
expressed in arbitrary units (e.g., pixels).
The results of the model simulation are illustrated for a

continuous, i.e., non-segmented contour in Figure 2a, and
for a single, randomly chosen segment phase for segmented
contours of 5 segment/gap lengths in Figures 2b–2f. The
response of the curvature detector is shown as the height of
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the black bar on the right of each figure. In the full
simulation the shape phase of the sine-wave-shaped
contour was fixed so that the contour always passed
through the curvature detector’s receptive field. However,
the phase of segmentation was randomized on each

iteration. By randomizing segmentation phase the proba-
bility that any point along the path of the curvature
detector’s receptive field was stimulated would be exactly
0.5 per iteration, for all segment lengths. Note that in
Figure 2f, which shows an example response to the longest

Figure 2. Example responses from the model simulation for (a) a non-segmented contour and (b–f) segmented contours of segment
lengths 0.0336, 0.1062, 0.3358, 0.5972, and 1.8884. In each figure a curvature detector receives input from four sub-units whose
receptive fields are arranged curvilinearly and whose responses are multiplied. The curvature detector’s receptive field is positioned to be
matched to a portion of the contour. The response of the curvature detector for the sample iteration (i.e., one random phase of
segmentation) in each figure is shown as the height of the black bar on the right (see text for details). (g) Mean response of the curvature
detector estimated over 1000 iterations (i.e., 1000 random phases of segmentation), as a function of segment length. The mean response
is similar for both short and long segment lengths, but for a narrow range of intermediate segment lengths, the response collapses to zero.
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segment length condition, the particular response shown
would only occur on a small proportion of iterations. In this
segment length condition segment-phase randomization
would result in just as many iterations producing no
response whatsoever. Example responses from a continuous
sequence of iterations (i.e., segmentation phases) can be
seen in the movies shown in Appendix A or at http://www.
mvr.mcgill.ca/Fred/research.htm#contourShapePerception.
Figure 2g shows the average response of the curvature

detector estimated over a large number (1000) of
iterations (each with random segmentation phase), as a
function of segment length. As one can see, the mean
response is similar at both short and long segment lengths,
but for a narrow range of intermediate segment lengths,
the response collapses to zero. Additional simulations
reveal that the position and width of the dip is determined
by two factors: (a) the number of sub-units, and (b) the
length of the sub-unit receptive field. We simulated the
effect of these two factors separately. As an illustration,
Figure 3a shows the effect of the number of sub-units (n =
2, 3, 4, and 5) for a constant sub-unit length (s = 40).
Figure 3b shows the effect of sub-unit length for a
constant number of sub-units (n = 4). These examples
show that by increasing either the number or the length of
the sub-units, the position of the dip shifts toward longer
segment lengths.
One might think that a random, rather than step-by-step

change in the segmentation phase would produce a differ-
ent average response in the curvature detector. Figure 3c
shows the response of the curvature detector averaged
over a large number (1000) of random (black symbols)
and step-by-step (red symbols) changes in segmentation
phase, as a function of segment length. As one can see, the
average response is similar for both random and step-
by-step changes. The standard error of the mean (SEM) of
the responses for the random-phase condition is shown in
Figure 3d for a curvature detector with n = 4 sub-units and
sub-unit length s = 40. Similar SEMs were obtained for
other combinations of number and length of sub-units.
For different combinations of number and length of sub-

units, we determined the segment length at which the
mean response of the curvature detector reached a
minimum. In the single-filter model described here, the
product of number and length of sub-unit gives the length of
the curvature detector’s receptive field. Figure 3e shows a
linear dependence between the segment length producing
the minimum response and the curvature detector’s
receptive-field length. Knowing the segment length of the
contour at which the mean response of the curvature
detector reaches a minimum therefore allows us to estimate
the approximate length of the curvature detector’s receptive
field, as a function of the number of sub-units.
To summarize, our simulations reveal a signature of a

curvature detector that multiplies the inputs from its
component sub-units. When stimulated with curved con-
tours that are broken into segments, with the gap between
segments equal to the segment length, a response function

with a pronounced near-symmetrical dip is found at a
particular intermediate segment length.
Before describing the psychophysical results, there is

however an important caveat. The model above simulates
the average response of a single curvature detector whose
global receptive-field structure is closely matched to a
half-cycle cosine part of the adapting contour. As such,
the model is not a model of the SFAE or SAAE. These
after-effects presumably result from changes in the gain of
a sub-set of curvature-sensitive neurons whose population
response contains the code for curvature. Only some of
these neurons will have a global receptive field structure
matched to the half-cycle cosine parts of the contour.
Therefore although all responding curvature detectors will
be subject to the effects of segmentation as described in
our matched single-detector model, the model can only
make qualitative, not quantitative, predictions about the
SFAE and SAAE.

Psychophysics

If the response of a curvature detector that multiplies its
sub-unit responses dips at some intermediate segment length,
then it is reasonable to assume that a curvature-based after-
effect induced by segmented adaptors will also dip at some
intermediate segment length. We tested this prediction in
both the SFAE and the SAAE. For each measurement
subjects were presented with a pair of adaptors that differed
by a factor of three in either shape frequency or shape
amplitude (see Figures 1a and 1b). During the test phase
subjects were required to adjust the difference between two
test stimuli (presented at the same retinal locations as the
adaptors) using a computer-controlled staircase procedure,
until the point of subjective equality (or PSE) was reached.
The size of the after-effect was then given by the ratio of the

Figure 3. Model simulations showing the effect of (a) the number
of sub-units (n = 2, 3, 4, and 5) for a constant sub-unit length
(s = 40) and (b) sub-unit length for a constant number of sub-units
(n = 4). Increasing either the number or the length of the sub-units
shifts the position of the dip toward longer segment lengths.
(c) Sample average curvature detector responses estimated over
1000 random segmentation phase samples (black symbols) and
step-by-step changes in segmentation phase (red symbols), as a
function of segment length. (d) Example mean response of
curvature detector with standard error of the mean (SEM) showing
the variability in the response of the curvature detector estimated
over 1000 iterations, each with random segmentation phase.
(e) The segment length producing the mean minimum response is
plotted as a function of the overall length of the curvature
detector’s receptive field, for different numbers of sub-units n
(n = 2, black square, dash line; n = 3, gray square, gray line; n = 4,
gray circles, black continuous line; n = 5, black circles, black
continuous line; n = 6, black triangles, black continuous line).
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relevant dimension (shape frequency for SFAE and shape
amplitude for SAAE) between the two test stimuli at the
PSE. Details of the procedure and data analysis are given
in the Methods section. We used two types of adaptors:
(i) continuous sine-wave-shaped contours, and (ii) segmented
sine-wave-shaped contours (see Figures 1c–1k). Segment

length was expressed as the proportion of the length of a
single cycle of the contour measured along the path of the
contour. We used nine adaptor segment lengths: 0.0336,
0.0597, 0.0, 0.1888, 0.3358, 0.5972, 1.0619, 1.8884, and
3.3581. The test contours were all continuous. The reason
for using continuous test contours was to ensure an ‘even

Figure 4. Psychophysical results. (a) SFAEs (gray symbols) and SAAEs (black symbols) are plotted as a function of adaptor segment
length. The gray and black coarse-dashed lines indicate the SFAE and SAAE obtained with continuous sine-wave-shaped adaptors. The
fine-dashed lines indicate the no-adaptor conditions. Both the SFAE and SAAE show a pronounced dip for intermediate adaptor segment
lengths (0.33 proportion of single cycle length for subjects AB, LS, BA, and KW and 0.59 for subject EG) for both after-effects. (b) Average
SFAEs and SAAEs for four subjects (see text for details).
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playing field’ for all conditions and to ensure that
segmentation only impacted the adaptation process and
not the conscious judgment of the relative shapes of the two
test contours.
Figure 4a shows the size of the after-effect for SFAEs

(gray symbols) and SAAEs (black symbols) as a function
of adaptor segment length. The right, lower panel in
Figure 4a shows the SFAE for subject BA and the SAAE
for subject KW. The gray and black coarse-dashed lines
indicate the SFAE and SAAE obtained with continuous
sine-wave-shaped adaptors. As can be seen, the maximum
sized after-effects obtained with segmented adaptors are
smaller than those for continuous adaptors. More impor-
tantly, both SFAEs and SAAEs show a pronounced dip at
intermediate adaptor segment lengths.
The dip occurs at the same adaptor segment length (0.33

proportion of single cycle length for subjects AB, LS, BA,
and KW and 0.59 for subject EG) for both after-effects.
The results also indicate that in three subjects (EG, LS,
KW) there is a small decline of both after-effects at very
short segment lengths (between 0.03 and 0.1). This might
be due to the fact that short segment lengths are more
broadband in their orientation composition, producing
spurious orientations that mask the ‘signal’ orientations.
In order to compare the size of the dip for different

subjects and for the two after-effects, we normalized the
data to the maximum sized after-effect for each subject.
Figure 4b shows the average SFAE across the four
subjects (AB, EG, LS, BA) and average SAAE across
the four subjects (AB, EG, LS, KW). Figure 4b indicates
that the size of the dip is approximately 0.25 of the
maximum for the SFAE and 0.44 of the maximum for the
SAAE.
The experimental results in Figure 4, which showed that

the position of the dip for most subjects is about 0.33 of
the length along the path of a single cycle, allows us to
constrain our model simulations if we make an important
caveat. The model simulations are for a single curvature
detector, whereas the after-effects we are dealing with

presumably result from the operation of multiple
curvature detectors, as explained above. The caveat is
that any estimate of the length of the curvature detector,
which is a product of the number and length of the sub-
units, will likely represent an average value of a range of
curvature detectors varying in either or both of length and
number of sub-units.
In Figure 3e we obtained plots showing the position of

the dip as a function of the receptive-field length of the
(average) curvature detector for different numbers of sub-
units. To obtain estimates of curvature detector length one
simply multiplies the slopes of the plots by 0.33 (the data).
Figure 5a plots these estimates as a function of the number
of sub-units. The plot in Figure 5a asymptotes at È0.65 of
the length of a single cycle, for numbers of sub-units equal or
greater than 4. Assuming 4 sub-units and a 0.65 asymptote,
the length of a single sub-unit is 0.65/4 = 0.163. Figure 5b
shows the portion of the adaptor (whose shape frequency
and shape amplitude is the geometric mean of the two
adaptors) captured by the curvature detector (assuming it
has four sub-units and is centered in cosine phase). This
estimate is comparable to that derived by a completely
different method in a study by Gheorghiu and Kingdom
(2007a): È0.55 cycle length as defined along the horizontal
dimension or abscissa, which in turn corresponds to
È0.61 of single cycle length along the contour.
In order to pursue the modeling further it is convenient

to give the estimated length of the curvature detector in
pixel units as in the model simulation. The segment length
at the dip minimum of 0.33 is 1 log unit from the smallest
segment length used in the experiment (0.033). Given that
the smallest segment length in the model was 5 pixels, a
value of 0.33 corresponds to 50 pixels for the dip position
and an estimated curvature detector length of 100 pixels.
Assuming 4 sub-units, this results in a sub-unit length
s = 25 pixels.
A comparison between the psychophysical data (Figure 4)

and the simulations (Figure 3) shows that the dip in the data
does not reach zero and is slightly broader than that
predicted by the model. Both these features can be explained
by supposing that during adaptation a range of curvature
detectors of various receptive-field lengths are stimulated.
Let us assume that the range of stimulated curvature detector
lengths is ‘centered’ on the length estimated above: n = 4

Figure 5. (a) The estimated length of the curvature detector as a
function of the number of sub-units. (b) The estimated receptive
field profile of the curvature detector assuming four sub-units.

Figure 6. Example individual responses (dark gray symbols) as
well as average responses (light gray symbols) for (a) 3 stimulated
curvature detectors whose sub-unit lengths are s = 23, 25, and 27;
(b) 4 stimulated curvature detectors whose sub-unit lengths are
s = 20, 25, 30, and 35. (c) Average responses from a range
of curvature detectors, whose individual responses are from
100 pixel length curvature detectors with n = 4 sub-units of length
s = 25, n = 3 sub-units of length s = 33.3, and n = 5 sub-units of
length s = 20. As can be seen the dips in the combined responses
do not reach zero and are broader than the individual responses,
in line with the data.
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sub-units of length s = 25 (see Figure 1g). The range of
curvature detectors could receive input either from (a) the
same number, n = 4 of afferent sub-units but with different
sub-unit lengths, or (b) different numbers of sub-units
having the same sub-unit length (s = 25). Figure 6 shows
both individual responses (dark gray symbols) as well as
average responses (light gray symbols) for (a) 3 stimulated
curvature detectors whose sub-unit lengths are s = 23, 25,
and 27, respectively; (b) 4 stimulated curvature detectors
whose sub-unit lengths are s = 20, 25, 30, and 35,
respectively. As can be seen the dips in the combined
average responses do not reach zero and are broader than
the individual responses, in line with the data.
A broader dip could also result from the average

response of a range of curvature detectors with the same
receptive-field length but which receive input from
different combinations of number and length of sub-units.
Figure 6c shows the average response (light gray symbols)
from a range of curvature detectors, whose individual
responses (dark gray symbols) are from 100 pixel length
curvature detectors with n = 4 sub-units of length s = 25,
n = 3 sub-units of length s = 33.3, and n = 5 sub-units of
length s = 20. As can be seen the dips in the combined
average responses do not reach zero and are broader than
the individual responses, again in line with the data.

Discussion

This study is to our knowledge the first psychophysical
evidence that curvature detectors multiply the responses
of their afferent inputs. Model simulations revealed an
important feature of multiplication: a pronounced near-
symmetric-shaped dip in the response of a curvature
detector to segmented contours of intermediate segment
length. We observed just such a dip psychophysically in
two contour-shape after-effects induced by segmented
contour adaptors.
It is important to reiterate that the model simulations are

not models of either the SAAE or SFAE. Assuming these
after-effects are caused by internal gain changes to a sub-
set of curvature detectors whose population response
signals curvature, a sub-set that not only differs in
receptive-field length but also curvature, the psychophys-
ical data are clearly insufficient to constrain a fully fledged
multi-filter model of the after-effects that would inevitably
contain many free parameters. Thus our model simula-
tions are ultimately qualitative not quantitative. Never-
theless, we were able to show that two features of the
single-filter model simulation that did not accord with the
psychophysical data, namely a dip that was both very
narrow and reached a minimum of zero, could be dealt
with simply by combining responses across a range of
curvature receptive-field lengths. This is not to claim that
this is the only explanation of these features of the data,
merely that in principle it could be.

Note that if curvature detectors linearly summed their
sub-unit responses, a flat function of after-effect against
segment length would be expected, since during adaptation
the curvature detectors would receive, on average, the same
amount of stimulation irrespective of segment length.
In the Introduction section we mentioned the end-

stopped model of Dobbins et al. (1987, 1989) and argued
that while end-stopping might be used for curvature
discrimination, it is unlikely to be used for curvature
encoding. Nevertheless it would be prudent to consider
how well the Dobbins et al. model would predict our data.
We simulated the model using the same form of input sub-
units as in the multiplication model described above. In
the simulation, the end-stopped detector received inputs
from just two sub-units whose receptive fields were
centered at the same location (i.e., they overlapped). The
two sub-units had the same orientation but were of
different sizeV40 and 120 pixels in length. Each sub-unit
summed the energy (e.g., r.m.s. luminance contrast) of the
contour that fell within its receptive field. End-stopping
was computed by taking the difference between the
responses of the two sub-units. The model prediction is
shown in Figure 7. The figure shows that as segment
length increases from zero, there is a very slight decrease
in response, but the response is characterized primarily by
being flat over most of the range of segment lengths. This
is because on average the amount of excitation and
inhibition between the two receptive fields will be
constant as segment length increases.

Figure 7. Simulation of the response of a version of the Dobbins
et al. (1987) end-stopped model to the segmented adaptors. The
end-stopped detector receives input from two sub-units whose
receptive fields are centered at the same location (i.e., they
overlap), have the same orientation but are of different size:
RF1 = 40 and RF2 = 120 pixels. Each sub-unit sums the energy
(e.g., r.m.s. luminance contrast) of the contour that falls within its
receptive field. The end-stopping is computed by taking the
difference between the responses of these two sub-units.
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Are there other non-linear models that could produce a
similar dip? The most basic type of nonlinearity is
thresholding. Let us assume that the sub-units have a
threshold (T) such that below T their response is zero and
above T their response is a linear function of stimulation.
Simulations of linear summation of sub-unit responses are
shown in Figures 8a and 8b.
T is expressed as a proportion of the maximum sub-unit

response, for T = 0.25 (white), T = 0.35 (light gray), and
T = 0.5 (dark gray). Figure 8a shows the results for
different numbers of sub-units (n = 2, 3, 4, and 5) with
constant sub-unit length (s = 40). Figure 8b shows the
results for various sub-unit lengths (s = 40, 60, 80, and
100) with a fixed number of sub-units (n = 4). The
simulations reveal that a sharp dip at an intermediate
segment length only occurs for high thresholds (T = 0.5).
A threshold of 0.5 produces a dip comparable in size to
that obtained experimentally for the SAAE (È0.44) but
not for the SFAE. However, as Figures 8a and 8b also
show, the modeled shape of the response function for

these high thresholds is asymmetric, with the left side of
the function prominently reduced, unlike the experimental
data. A high threshold, such as T Q 0.5, is also
implausible. It would predict that after-effects would only
be obtained at medium and high contrasts. In a previous
study we found similar sized SFAEs with adaptor and test
contrasts of 0.05, 0.15, and 0.45 (Gheorghiu & Kingdom,
2006). Therefore model simulations of the effects of
thresholding, together with considerations of plausibility,
argue against high thresholding as the cause of the dip in
the after-effects we have observed.
What of other nonlinearities besides thresholding?

Other common nonlinearities that have been used to
model early visual processing are rectification, clipping,
divisive normalization, nonlinear summation, and a power
function followed by summation. We have simulated all
these nonlinearities and none show the characteristic
response dip found with multiplication.
Why multiplication? Some studies have argued that

linear filtering, even if modified by common nonlinearities

Figure 8. Simulations of a model in which a threshold T, defined as a proportion of the maximum response, is imposed on each sub-unit
response prior to linear summation of sub-unit responses. T = 0.25 (white symbols), T = 0.35 (light gray symbols), and T = 0.5 (dark gray
symbols). Results (a) as a function of the number of sub-units (n = 2, 3, 4, and 5) for a constant sub-unit length (s = 40). Note that the
position of the dip does not change with increasing number of sub-units. (b) As a function of sub-unit length (s = 40, 60, 80, and 100) for a
constant number of sub-units (n = 4). Increasing the length of the sub-units shifts the position of the dip toward longer segment lengths.
For the combination of number and length of sub-units that produces a dip at comparable locations to the psychophysical data,
simulations are shown for T = 0.55 (red) and T = 0.6 (blue).
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such as those described above, is unable to sufficiently
distinguish between one- and two-dimensional stimuli, for
example a straight versus a curved contour, because
although these nonlinearities change the form of the
output signal they never cause the output signal (i.e.,
response to a straight line) to disappear completely
(Zetzsche & Barth, 1990Vsee their Figures 1a and 1b).
Multiplication in a curvature detector will have the effect
of sharpening the selectivity of the detector to curvature,
and this will mean that fewer detector responses are
needed to estimate curvature. One can also consider
multiplication to be a form of grouping; in the case of
curvature processing a means to link up local contour
fragments that are parts of curves.
How might multiplication be implemented? Curvature

detectors might implement multiplication explicitly (e.g.,
direct multiplication of two signals: a I b, or via another
mathematical operation that is equivalent to multiplica-
tion). For example, multiplication can be implemented via
a Log–Exp transform

a I b ¼ expðlogðaÞ þ logðbÞÞ; ð2Þ

which is believed to be one of the most basic computa-
tional operations in the nervous system (Mead, 1989).
Another possibility is the well-known Babylonian trick
(Resnikoff & Wells, 1973; Zetzsche & Barth, 1990):

a I b ¼ 1=4½ðaþ bÞ2 j ða j bÞ2�: ð3Þ

The Babylonian trick underpins a number of motion
models, for instance the motion-energy model of Adelson
and Bergen (1985) and the elaborated Reichardt motion-
detector model of van Santen and Sperling (1985, 1984).

Appendix A

Examples of dynamic changes in the response of the
curvature detectors for various random changes in the
phase of segmentation and for different segment lengths
(Movies 1–5).

Movie 1. Segment length of 0.05 (% single cycle length).

Movie 2. Segment length of 0.1 (% single cycle length).

Movie 3. Segment length of 0.33 (% single cycle length).

Movie 4. Segment length of 1.06 (% single cycle length).
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