
Vision Research 40 (2000) 493–502

Global factors that determine the maximum disparity for seeing
cyclopean surface shape

Lynn R. Ziegler *, Robert F. Hess, Fred A.A. Kingdom
McGill Vision Research Unit, Department of Ophthalmology, McGill Uni6ersity, 687 Pine A6enue West, H4-14, Montreal,
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Abstract

A disparity gradient limit explains why the maximum amplitude of sinusoidal disparity gratings increases with decreasing
disparity spatial frequency. It also explains why the largest disparity for binocular fusion (diplopia threshold) varies directly with
stimulus element separation. Does a disparity gradient limit also apply to the detection of cyclopean shape? A previous study
addressed this question and concluded that it does not. We examined this question by measuring the largest disparity amplitude
(dmax) at which observers could judge the shape of cyclopean disparity gratings. We used trapezoidal, triangular, sinusoidal, and
square wave gratings in order to dissociate the effects of disparity gradient and disparity spatial frequency. Gabor micropatterns
were used to minimize potential scale-dependent interactions with luminance processing. Our results support a disparity gradient
limit for cyclopean shape perception, with additional factors being involved at high disparity spatial frequencies. Combining the
gradient limit hypothesis with lowpass disparity filtering describes the pattern of dmax for both smooth and discontinuous surface
shapes. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stereopsis provides a major advantage to vision since
it allows the identification of an object’s surface shape
from disparity information alone. How is the maximum
disparity for perceiving stereo shape determined by
global factors, that is, the pattern of disparity changes
within the stimulus? Previous studies have identified at
least two potentially important global factors: disparity
spatial frequency and disparity gradient. We address
here which of these is the critical factor.

Disparity spatial frequency was identified as an im-
portant factor by Tyler (1974) who modulated the
disparities of sets of random dots sinusoidally. The
modulation spatial frequency varied vertically, while
the amplitude varied horizontally, and observers indi-
cated the range in both dimensions for seeing depth.
Tyler found that the maximum useful disparity de-
creased linearly with spatial frequency, which was ex-

plained by ‘…a limit in rate of change of disparity …’.
Although the results could have been interpreted as an
effect of stimulus size (of each half-cycle of the dispar-
ity grating), Tyler and Julesz (1980) showed otherwise.
They varied the width of a rectangular portion of a
dynamic visual noise field while keeping its height
constant. All dots within the rectangle had either
crossed or uncrossed disparities, and observers judged
whether the rectangle was nearer or farther from fixa-
tion. The maximum useful disparity did not vary as a
function of size linearly, and this suggested that for
sinusoidal disparity gratings it was determined by some
other factor.

Furthermore, Burt and Julesz (1980) reported that a
disparity gradient limit, a unitless perceptual constant,
determines the largest useful disparity for binocular
fusion (the diplopia threshold). With their stimuli, each
eye saw pairs of dots arranged in a regular grid. Dispar-
ities were identical within each stimulus but varied
among stimuli. Within each eye’s view, dot-pair separa-
tion was the same horizontally but varied vertically
with the largest at the top. Observers indicated the row
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below which fusion was impossible. Because the mini-
mum dot-pair separation was found to be proportional
to disparity, Burt and Julesz concluded that binocular
correspondence cannot occur when the disparity gradi-
ent exceeds a critical value of about 1. Inherent con-
straints on correspondence based upon a gradient seem
plausible, because the geometry of binocular viewing of
opaque surfaces does not allow for a disparity gradient
greater than 2 (Trivedi & Lloyd, 1985; reviews in Tyler,
1991; Howard & Rogers, 1995).

The disparity gradient limit hypothesis as applied to
the identification of cyclopean surface shape however
has recently been challenged. Lankheet and Lennie
(1996) measured the ability of observers to detect sinu-
soidal disparity gratings in moving random dot displays
that were degraded by various amounts of disparity dot
noise. Both grating amplitude and frequency were
varied to cover a large range. Lankheet and Lennie
concluded that there was no evidence of a disparity
gradient limit, stating that ‘detection of binocular corre-
lation depends on both spatial frequency and amplitude
of disparity modulations, and cannot be reduced to a
description in terms of gradient limits’.

Furthermore, the gradient limit hypothesis is inher-
ently limited, since it does not predict the maximum
disparity for discontinuous shapes. For example, a
square wave disparity grating contains infinitely large
gradients, so a gradient limit would imply shape would
never be perceived, but it is. One may argue that square
wave disparity gratings provide multiple surfaces, and
thus are an exception to the gradient limit rule. Square
wave gratings however do not always appear as multi-
ple surfaces. If square gratings are not exceptional, how
then can a gradient limit apply?

The present study addressed the effects of global
factors, particularly disparity gradient and disparity
spatial frequency, on the maximum disparity amplitude
in the stimulus that allowed observers to see cyclopean
shape, which for brevity we call dmax.1 We used dispar-
ity gratings formed from random arrays of identical
Gabor micropatterns, similar to the stimuli used in our
study of stereoacuity, or dmin (Hess, Kingdom &
Ziegler, 1999). There we found that high luminance
spatial frequencies supported a greater range of dispar-
ity spatial frequencies than low luminance spatial fre-
quencies. This suggested the possibility of interactions
between the luminance and disparity domains for dmax.
Previous studies have used broadband elements (e.g.
Tyler, 1974; Lankheet & Lennie, 1996; Glennerster,
1998). Here we used a relatively narrowband stimulus,
fixed in luminance spectral content, allowing us to
examine global factors while avoiding potential interac-
tions between luminance and disparity processing.

A number of different techniques have been used to
measure dmax, and each type of experimental procedures
has its own set of difficulties. In particular, it has been
demonstrated that conclusions derived from experi-
ments where a single element is judged near or far from
the fixation plane do not necessarily generalize to cy-
clopean shape perception (Ziegler & Hess, 1999). Fur-
thermore, measurements of dmax in terms of fusion
limits may be complicated because of hysteresis, eye
movements, or how fusion, rivalry, or diplopia is
defined, as well as by variations in criteria among and
between observers. We avoided these difficulties with a
two-alternative shape perception task whereby, upon
each trial, observers judged the orientation of a briefly
presented disparity grating, as left or right oblique. As
the disparity amplitude gradually increased, at some
peak disparity, shape could not be perceived, and orien-
tation discrimination fell to chance. We used disparity
gratings with various cross-sectional shapes over a
range of frequencies (here, frequency, grating, and gra-
dient will be used in regard to the disparity domain,
unless noted otherwise).

We have examined which global factor determines
dmax, whether it is frequency, a gradient limit, a combi-
nation of the two, or perhaps some other factor. To do
so we adopted the approach of Campbell, Johnstone
and Ross (1981) to the analogous question for contrast
sensitivity. That is, for each of a wide range of frequen-
cies, we used different trapezoidal2 grating shapes that
allowed us to vary frequency and gradient indepen-
dently. For these stimuli, a specific pattern of results
would be expected, depending upon whether dmax is
determined by a gradient limit or by frequency. The
different predictions are shown in Fig. 1 where, for dmax

as a function of ramp width, each segment represents
the results for each of the grating shapes at a single
frequency. Dmax is expected to show a direct depen-
dence (A) irrespective of frequency if gradient is the
main factor. On the other hand, if frequency is the
main factor dmax should be relatively invariant with
ramp width, but dependent on frequency (B). Part of
this work has been presented in abstract form (Ziegler,
Hess & Kingdom, 1998).

2. Methods

2.1. Subjects

The three authors served as observers. Each had
participated in previous stereo experiments and had
normal or corrected-to-normal visual acuity and nor-
mal stereopsis. Data for the trapezoidal, including tri-
angular, gratings were collected only from LZ and FK.

1 Other researchers have used dmax to refer to the disparity that
results in the greatest perceived depth (e.g. Tyler & Julesz, 1980).

2 One may include triangular gratings as a special case of trape-
zoids (plateau width of zero).
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Fig. 1. Two possible outcomes for our experiment that measured the maximum disparity amplitude (dmax) of trapezoidal gratings as a function
of ramp width, for combinations of frequency and shape. (A) If dmax is determined by a disparity gradient limit alone, and (B) if dmax is determined
by disparity spatial frequency alone. Each segment represents dmax values for all shapes and one disparity spatial frequency.

2.2. Apparatus

All stimuli were generated using a Silicon Graphics
O2 and displayed on a Sony GDM-20E21 monitor.
Observers wore LCD shutter-glasses (StereoGraphics
Inc. ‘CrystalEyes’) synchronized to alternations of the
full-screen stereo half-images, so that each eye received
a flicker-free image at 60 Hz. The linearity of the
monitor was confirmed photometrically.

2.3. Viewing conditions

Observers sat at a viewing distance of 57 cm and
ambient room illumination was low. The display sub-
tended 28×36° at a resolution of 1024×1280 pixels.
The mean stimulus luminance was 6.0 cd/m2, measured
through a lens of the shutter glasses.

2.4. Stimuli

Each stereo half-image consisted of a random array
of Gabor micropatterns (‘Gabors’), with a Gaussian
scale factor (s) of 0.18° (perceptually 0.5° wide). Their
carriers were in sine phase and at a center luminance
spatial frequency of 1.68 c/deg. Luminance levels were
assigned with subpixel accuracy. Each Gabor stereo-
pair was positioned randomly. To prevent the introduc-
tion of occlusion artifacts when Gabors fell on top of
one another, the pixel gray-levels of each Gabor, hav-
ing zero baseline, were added first to an image buffer,
with the background gray-level added last (Hess et al.,
1999). We modulated the disparities of the Gabors at a
particular spatial frequency to produce a disparity grat-
ing (example, Fig. 2). The disparity grating was ori-
ented at 926° from horizontal. To be sure that a

response could not be based upon the depth seen at a
single location, we assigned the modulation phase at
random for each trial.

We designated the trapezoidal and triangular grating
shapes following Campbell et al. (1981) by their half
ramp width t in radians. They were a triangular wave-
form (t=p/2), a thin trapezoid (p/4), and a nearly
square trapezoid (p/8). The thin trapezoid is shown in
Fig. 2. For a single corrugation frequency, as t ap-
proaches 0, the stereo shape becomes more square-like.
For each shape, seven frequencies were used, from
0.044 to 0.35 c/deg (l=23–3°).

A potential monocular cue for detecting the corruga-
tions of non-horizontal gratings is a difference in ele-
ment density, i.e. compression along slopes, and
rarefaction at peaks and troughs. We found this cue
however to be insufficient to perform our task at the
disparities reported here-if it had been, the staircase
would have failed to converge. On the rare occasions
when this cue became visible, that staircase was aborted
and its data ignored.

A 1° wide central cross was present whenever the
stimulus was not displayed. Exposure duration was 117
ms (14 stereo frames), well below saccadic latencies
(Rashbass & Westheimer, 1961; Stevenson, Cormack &
Schor, 1994). Immediately after stimulus presentation,
but before user response, the vertical arms of the cross
became nonius lines. They were used to confirm that,
with the brief presentations, fixation was easy to
control.

2.5. Procedure

A single grating was presented on each trial, and
observers used the mouse buttons to report the orienta-
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Fig. 2. A stereogram of an obliquely oriented disparity grating created from many Gabor elements. Observers discriminated between oblique
orientations of similar gratings of various shapes and spatial frequencies. This shape is the thin trapezoid. All stimuli in this study were composed
of identical Gabor elements: luminance spatial frequency, 1.68 c/deg; s, 0.18°; contrast, 33%.

tion of the corrugation, left or right oblique. Disparity
amplitude began at 20 min and was adjusted automati-
cally by a conventional staircase procedure, i.e. in-
creased after two consecutive correct responses and
decreased after every incorrect response, each by one-
quarter octave (�19%). After 12 reversals, the proce-
dure terminated automatically. Dmax was estimated as
the geometric mean of the last eight reversals. These
estimates are at the 71% correct level. We report the
geometric means of these estimates from at least two,
and generally four or more, staircases.

3. Results and discussion

For the trapezoidal gratings, which we used to vary
gradient and frequency independently, recall how dmax

would be expected to vary with each factor. When
plotted against ramp width, as in Fig. 1A (in degrees of
absolute visual angle while ignoring frequency and
shape), if dmax were determined by a gradient limit
alone, then values should fall on a straight line. The
line would have a +1 slope and a location defined by
the gradient limit, or gmax. On the other hand, following
Fig. 1B, if dmax were determined by frequency alone,
then the values would lie on separate, vertically dis-
placed, horizontal lines (each line corresponding to one
frequency and all shapes).

Fig. 3A shows dmax as a function of ramp width. A

distinct asymptote appears for the large ramp widths,
as predicted by a gradient limit (Fig. 1A). For small
ramp widths however the values are larger than pre-
dicted by the gradient limit hypothesis, and are in the
direction of the frequency hypothesis. This may be
explained by other factors however, as shown below.
Results for sine gratings, obtained in the same manner
(below), are included in the figure.3 The dashed (coarse)
line for each graph in Fig. 3A is the best fit constrained
to a linear function (a slope of +1 in log space). These
lines provide estimates of gmax of 1.5 for LZ and 2.4 for
FK.

Fig. 4A shows the trapezoid data in terms of dmax

versus frequency. The slopes are steepest for the trian-
gles and become shallower as shape becomes more
square-like. These differences, that are contingent upon
shape, decrease with increasing frequency. Observer LZ
provided control data (frequency, 0.25 c/deg) at a den-
sity of 4800 elements with identical results. This sug-
gests that the differences between the shapes at that
frequency were not the result of inadequate spatial
sampling. The convergence of the different shape curves
indicates that whatever distinguishes the shapes has
progressively less effect as frequency is increased.

3 As suggested by a reviewer, by estimating the effective ramp
width of a sinusoid. We used the ramp widths of trapezoidal gratings,
of the same frequency and amplitude as the sinusoids, that had the
same maximum gradient, that is, t=1.
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Fig. 3. (A) Dmax for cyclopean shape perception as a function of ramp width (in degrees of absolute visual angle). Each isofrequency curve consists
of measurements of dmax for four grating shapes in order of increasing ramp width, that is, left to right: p/8 (fat) trapezoid, p/4 (thin) trapezoid,
sinusoid, and triangle. Error bars here and in subsequent graphs designate 91 SE. Broken lines are the best fits based upon a disparity gradient
limit alone, i.e. constrained to a slope of +1 in logspace. (B) Simulation results (Section 3.4), plotted in the same manner, which used a simple
model that included disparity domain lowpass filtering as well as a disparity gradient limit. Dotted lines in both (A) and (B) represent gmax from
the simulation (1.2 for LZ and 1.9 for FK).

We next analyzed this convergence of the curves
while taking into account the differences between the
shapes in the frequency domain. The shapes are com-
posites of a fundamental frequency and its odd har-
monics, each at a specific amplitude. The amplitude of
the fundamental Fourier component of a trapezoid is
different than that of the trapezoid itself, as shown in
Fig. 4 (right). In Fig. 4B we have recast the data in
terms of the amplitude of the fundamental. At the
lower corrugation frequencies these curves are separate,
indicating that shape (i.e. gradient) determined dmax

there. At 0.25 c/deg and higher however the harmonics
that differentiated the shapes, starting with the third
harmonic, appear to have had little effect. This analysis
therefore points to an upper disparity spatial frequency
limit somewhere between 0.3 and 0.8 c/deg. Indeed, we
found that we were unable to perform our task with
sine gratings above 1.0 c/deg, even after increasing the
density to 9600 Gabors/screen.

3.1. Sinusoidal and square wa6e gratings

Under conditions identical to those with the trape-
zoidal gratings, we also measured dmax for sine and
square gratings. Fig. 5A shows that for sine gratings,
dmax decreased with increasing frequency for all three
observers. We had included this data in Fig. 3A in
plotting dmax as a function of ramp width. We calcu-
lated the gmax values at each frequency using the purely
mathematical relation for sinusoids:

gmax=2pfdmax

where f is frequency. This formula yielded values of
gmax from our data that varied considerably, both be-
tween and within observers (0.7–3). Although our tasks
were different and our stimuli covered a different range
of disparity spatial frequencies, these results neverthe-
less are similar to those of Lankheet and Lennie (1996).
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Fig. 4. (A) Dmax for cyclopean shape perception as a function of disparity spatial frequency for the trapezoidal gratings. The filled symbols at 0.25
c/deg for LZ are from a control condition of four times the regular density. Slopes of best-fit lines were, top to bottom, −0.73, −0.68, and
−0.45 for LZ, and −0.75, −0.66, and −0.36 for FK. (B) Dmax of the fundamental Fourier component of each shape, from the same data, based
upon the ratios (listed on the right) between the disparity profiles of each shape (shown as solid lines) and their fundamental components (dashed
lines).

Fig. 5. Dmax for cyclopean shape as a function of disparity spatial frequency for (A) sine, and (B) square wave gratings. Broken lines are from
least squares fits and have slopes of −0.55, −0.57, and −0.78 for the sines, and −0.13, −0.18, and −0.06 for the square waves, for FK, RH,
and LZ, respectively.
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Fig. 6. Dmax for cyclopean shape as a function of Gabor density. We used square wave and sinusoidal disparity gratings each at a disparity spatial
frequency of 0.125 c/deg.

Using the largest values that they provided in their Fig.
9 of (frequency×amplitude), we calculated that their
values of gmax ranged from about 0.5 to 2.

For square waves, Fig. 5B shows the function of dmax

versus frequency. Compared to the sinusoid data, the
functions are relatively constant.4 In addition, we wanted
to be sure that certain local factors, influenced by density,
do not determine dmax for square waves. That is, although
disparity gradient is normally considered independent of
Gabor density, it may be assumed that there is some finite
disparity gradient at edges, related somehow to the
average distances between Gabors. Fig. 6 shows however
that over a 3-octave (8× ) change in element density, dmax

for square gratings is independent of density.
Density also had little effect on dmax under the same

conditions for sine gratings, as shown in Fig. 6. Similarly,
Lankheet and Lennie (1996) found that density did not
effect the detection of sine gratings over a range of
frequencies, nor on the highest detectable frequency. In
conclusion, the lack of an effect of density on dmax for
either square or sine gratings confirms that the effects of
gradient and frequency on dmax reported here are truly
global.

3.2. Alternate explanations

We may safely discard a number of other explanations
for our results. First is that dmax decreased with frequency
for sinusoidal gratings because the number of Gabors
within Panum’s area decreased. Over a large range of
densities however dmax for sine gratings as a function of

density was constant, as shown in Fig. 6.
Second is that disparity gradient appeared critical

because it determined the width of the ramp that was
enclosed by Panum’s area. However, Burt and Julesz
(1980) reached the exact opposite conclusion; namely,
that Panum’s area itself is determined by disparity
gradient.

Third is that the decrease in dmax with frequency for
sinusoids was because critical regions of the waveform
were at larger eccentricities for lower frequencies, on
average, because our gratings were presented with a
random phase. If that were the case however then dmax

for square gratings would also be expected to have
decreased with increasing spatial frequency, and this was
generally not found, as shown in Fig. 5B.

Furthermore, we mentioned that Tyler and Julesz
(1980) examined the hypothesis that the size of regions
of constant disparity determines dmax, and they found a
square-root dependence on a log–log plot. Our data also
call this hypothesis into question. In Fig. 7, we show dmax

plotted as a function of plateau width for those grating
shapes that contained a well defined plateau, that is, the
fat and thin trapezoids. To analyze these graphs, one
must consider that while dmax appears to increase with
plateau width, plateau width and ramp width were not
independent factors. Instead, for a given waveform, as
plateau width increased (with increasing spatial period),
so did ramp width, allowing for a larger dmax based upon
a disparity gradient limit. The data fall naturally into two
lines, corresponding to the two shapes. This indicates
that gradient actually determined dmax, because if plateau
width determined dmax, all points would lie instead on a
single line. For our task, the size of constant disparity
regions within a shape does not determine dmax. Ramp
width (gradient), not plateau width, therefore appears to
be the critical factor.

4 The frequency of 0.35 c/deg was not used for square gratings
because there may have been a monocular cue at large disparities
from the gap created by the displacement of Gabors in each half-cy-
cle.
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One possible criticism of this conclusion however is
that our task may have been performed by using only
the sloping portions of the gratings. At threshold we
cannot say for certain which features were important.
Perceptually however (and this applies to all the wave-
forms used in this study) the shapes increased in depth
amplitude as disparity was increased until they abruptly
and completely disappeared. That is, the sloping re-
gions did not appear alone.

3.3. Why is a gradient limit model so poor at small
ramp widths?

Why does the gradient limit hypothesis predict
smaller values of dmax for the small ramp widths (at the
high frequencies) as shown in the lower left portion of
Fig. 3A? There are a number of possible explanations.
It may be related to our upper frequency cutoff being
lower than that found by Tyler (1974) who, using
broadband random dot displays, found it to be about
3–4 c/deg. We have shown previously that the upper
disparity spatial frequency cutoff is dependent upon
luminance spatial frequency (Hess et al., 1999). Thus,
the flattening of the curve in Fig. 3A may be because of
the specific center luminance spatial frequency of our
narrowband stimuli. As a control, we tried using
stereograms consisting of closely packed grids of the
Gabors. Absolute disparities were constant (10 min)
but alternated by row in sign. We measured the highest
frequency (by varying grid spacing) that allowed our
observers to see the square wave shape, yielding about
1.8 c/deg for all three observers. This suggests that the
upper frequency limit was not the only factor responsi-
ble for the flattening of the curves in Fig. 3A.

A second possible factor is disparity a6eraging
(Howard & Rogers, 1995), because our Gabors occa-
sionally overlaid one another. To estimate the possible
contribution of disparity averaging, we measured the

minimum distance between two of the Gabors that
resulted in their appearance at separate depths. The
displays were identical to the ones used in our main
experiments except the Gabors were arranged in a grid
pattern, with a horizontal step edge of (9 ) 10 min
disparity passing through the center of the display. As
we brought Gabors on either side of the step edge
closer together, their apparent depth did not begin to
merge until their center separation was 0.20° or less.
This suggests an upper frequency limit of about 2.5
c/deg from disparity averaging. Although this is higher
than the limit suggested by the results of the main
experiment, we cannot rule out an influence of disparity
averaging.

A third possibility is that our 0.5° wide Gabors were
flat, so would have represented the sinusoidal surface
shape more poorly as frequency increased. This might
have acted in effect as a disparity filter.

3.4. A simple simulation

Our results can be described by a model that com-
bines a disparity gradient limit with lowpass filtering, or
blurring, in the disparity domain. The model explains
the higher-than-expected dmax values at small ramp
widths, which in the previous section we suggested were
caused by a number of possible factors. The model
accounts for the convergence of the functions of dmax

versus frequency at high frequencies for all shapes, as
well as the different slopes of those functions. In addi-
tion, it addresses the problem of square wave gratings,
where dmax did not vary with frequency. Because the
step edges of square waves are the same regardless of
frequency, if filter size were small relative to grating
period, then filter size alone would determine dmax.
Then dmax would be constant as a function of grating
frequency, as we found.

Fig. 7. Dmax for cyclopean shape as a function of plateau width. Values would fall on a single line if the size of the region of constant disparity
determined dmax. They naturally group into two lines according to grating shape, as expected if disparity gradient determined dmax.
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Fig. 8. Simulation results (broken lines) compared with our empirical measurements (symbols) of stereo shape dmax. The simulation used two free
parameters: a disparity gradient limit, and a disparity lowpass filter size (Section 3.4). The curves are in the same order, top-to-bottom, as the
legend symbols (top-to-bottom), as well as the general trend in the data.

A computer program provided the best fit to our
empirical dmax values for all shapes and frequencies,
based upon two free parameters: s and gmax. The first
parameter, s was the scale factor of the Gaussian
blurring function with which a 1-D vector representing
each stimulus waveform was first convolved. The am-
plitude of the resultant waveform was then adjusted so
that its maximum disparity gradient was equal to the
second parameter, gmax, and that amplitude became the
estimate of dmax. Iterating with this routine, our simula-
tion was able to find a single pair of s and gmax that
fitted best the empirical values of dmax for all shapes
and all frequencies. The procedure used the multivari-
ate function minimization routine in MatLab (Nelder–
Mead simplex method), so both s and gmax could be
adjusted simultaneously. We confirmed the existence of
a unique, optimum solution pair by using a separate
program that plotted the sums-of-squares function over
the useful range of the two parameters. This function
varied smoothly and was without multiple local
minima.

Using the data from all five shapes, the simulation
provided reasonably good fits, with x2 of 2.2 and 5.8
for LZ and FK, respectively (d.f.=33, PB0.005). The
fits explain 97 and 95% of the variance in the data, as
estimated using r2, the coefficient of determination.
These fits were better than those provided by the gradi-
ent-only model, represented by the dashed lines in Fig.
3(A), where x2 was 7.3 and 15.0 (d.f.=26, PB0.05).
(excluding the square wave data; otherwise, a dmax of 0
is predicted, resulting in an infinite x2). The gradient-
only fits had r2=0.95 and 0.93 without, and r2=0.90
and 0.86 with, the square wave data. Fig. 3B shows the
estimates dmax, including the sinusoid data plotted as a
function of ramp width in the same manner as the

empirical data in Fig. 3A. Our model yielded estimates
of s of 0.55 and 0.57° (about three times the Gabor s),
and gmax of 1.2 and 1.9 for LZ and FK. The results
were consistent regardless of the portion of the data
used in the fit. For example, when only the sine and
square wave data were used for the fits, s were 0.67 and
0.78°, and gmax were 1.2 and 1.9. Similar values were
also obtained by using only the trapezoid and triangle
data, where s were 0.57 and 0.90°, and gmax were 1.4
and 1.8. These values for gmax are reasonably close to
those reported by Burt and Julesz (1980), and to the
values of 0.9 and 1.9 that we calculated from the data
fits in Tyler (1974). These values of gmax are also close
to those used in models (Pollard, Mayhew & Frisby,
1985) and are consistent with constraints based upon
the geometry of binocular viewing (Trivedi & Lloyd,
1985).

Although a model with more free parameters might
provide better fits to our results, Fig. 8 shows that this
relatively simple model captures the main qualitative
trends in the data (dashed curves), though not the
precise individual estimates of dmax. The order of the
location of the five curves is preserved, and the curves
also converge with increasing disparity spatial fre-
quency. The results of the simulation were disappoint-
ingly poor however for the highest disparity spatial
frequencies where its dmax’s were too large. A more
elaborate model might avoid this problem if it com-
pletely omitted disparity filters above some limiting
frequency.

For square disparity gratings, this simulation resulted
in a function of dmax versus frequency that was nearly
constant for both observers. This compares favorably
with our empirical data (Fig. 6). Thus, the disparity
filter hypothesis may explain how a gradient limit ap-
plies to square gratings.
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In conclusion, by using a variety of grating shapes,
we have demonstrated the importance to shape-from-
stereo of a disparity gradient limit. Clearly, however,
other factors may influence dmax especially near the
cyclopean upper frequency limit, and for square waves.
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