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Spatial-scale contribution to the detection
of mirror symmetry in fractal noise
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We investigated how the detection of mirror symmetry depends on the distribution of contrast energy across
spatial scales. Stimuli consisted of vertically symmetric noise patterns with fractal power spectra defined by
1/f b slopes (22 < b < 5). While overall rms contrast remained fixed at 25%, symmetry-detection thresholds
were obtained by corrupting the signal with variable amounts of noise with identical spectral characteristics.
A first experiment measured thresholds as a function of spectral slope, and performance was found to be sub-
stantially facilitated in images with power spectra that characterize natural scenes (1.2 < b < 3.2). In a
second experiment, symmetry was removed from randomly chosen octave bands and replaced by noise with the
same spectral profile. Results revealed that only in images with 1/f 2 spectra does performance decrease by
constant amounts across all frequency bands. Together, the results imply that symmetry mechanisms extract
equal amounts of information from constant-octave frequency bands but lack the ability to whiten stimuli
whose spectral slopes differ from those of natural scenes. Results are qualitatively well predicted by a mul-
tichannel model that (1) relies on spatial filters with equal-volume point-spread functions and constant-octave
frequency bandwidths and (2) restricts the computation of symmetry to spatial regions whose dimensions are
proportional to the filters’ spatial scale. These findings are also consistent with the notion that mechanisms
that mediate the perception of form exploit the ability of early vision to reduce second-order redundancy in
natural scenes. © 1999 Optical Society of America [S0740-3232(99)00909-6]
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1. INTRODUCTION
The human visual system is particularly sensitive to mir-
ror symmetry—a property found in several objects of eco-
logical importance, such as faces and body silhouettes.
Indeed, the mere reflection of a random pattern about an
axis is often sufficient to elicit compelling impressions of
familiar shapes, and this suggests an important role for
symmetry in the processing of visual form. However, a
full explanation of the visual mechanisms that mediate
the detection of mirror symmetry has yet to be cast in
terms of other known properties of the visual system. In
particular, the relative contribution of spatial scales to
symmetry detection is a fundamental issue that remains
unresolved and is addressed in the present paper.

The early stages of vision involve neurons that filter
the original image at a variety of scales,1,2 and there is in-
creasing evidence that this spatial analysis precedes the
computation of symmetry. In an early demonstration,
Julesz and Chang3 showed that the sum of vertically sym-
metric and horizontally symmetric white-noise patterns
appears to contain no symmetry but that the two symme-
tries can be simultaneously perceived if the two compo-
nent patterns are spatially filtered into frequency bands
that differ by two octaves. In more-recent studies, Dakin
and colleagues reported that performance is roughly scale
invariant in bandpass noise patterns4 and that symmetry
is computed over an integration region whose dimensions
are proportional to the spatial scale of the stimulus.5

Other studies also showed that symmetry detection in
random-dot displays is quite resistant to spatial jitter
near the axis,6–11 and this finding suggests filtering
mechanisms operating at a coarser scale than that of the
0740-3232/99/092112-12$15.00 ©
dots. The fact that detection thresholds are also depen-
dent on the orientation content of the image4,12–16

strengthens the evidence that symmetry detection is cor-
tical. Moreover, symmetry detection is vulnerable to re-
versals in contrast polarity between mirror-image
halves17–19 and therefore relies on mechanisms that are
sensitive to spatial phase (although see Tyler and
Hardage20). Finally, there are some reaction-time data
that suggest that symmetry perception relies on a coarse-
to-fine analysis.21 Taken together, these findings imply
that symmetry detection is mediated by spatial filters
whose properties are similar to those of simple-cell recep-
tive fields found in primary visual cortex.22

In the present paper we investigate whether the
mechanisms that mediate the detection of mirror symme-
try rely more on some spatial scales than on others.
Stated differently, we ask whether symmetry information
in broadband stimuli is given equal consideration across
spatial scales. There are two reasons why this issue has
not yet been resolved. First, many studies of symmetry
involve images composed either of randomly positioned
hard-edge elements6–9,17,23,24 (e.g., dots or lines) or white
noise10 that, owing to their broadband properties, are pre-
sumed to recruit filters from a variety of spatial tunings.
In such experiments, however, the relative contributions
from spatial filters of different scales are difficult to de-
termine, primarily because these stimuli have statisti-
cally flat power spectra, which, according to current stud-
ies of suprathreshold contrast sensitivity,25,26 tend to
perceptually overemphasize high spatial frequencies.
Consequently, broadband stimuli with flat power spectra
give only partial insight into the weighting of spatial
1999 Optical Society of America
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scales in symmetry detection because they restrict the
range of scales to which the visual system has access. In
addition, sparse random-dot stimuli are not ideal for test-
ing issues related to spatial scale since the low dot density
prevents significant amounts of information from enter-
ing the small spatial integration region for symmetry re-
ported for high frequencies.5

Second, studies that explicitly considered the role of
spatial scales in symmetry detection have used band-
limited patterns4,5,12,13 which provide useful results on
how symmetry mechanisms operate at different indi-
vidual scales. However, such stimuli make the response
to a broadband pattern difficult to predict because the
rules by which spatial scales are combined in symmetry
detection cannot be revealed by studying each scale in iso-
lation. For instance, symmetry detection with band-
limited stimuli should be more or less invariant with per-
ceived contrast, but for broadband stimuli such as white
noise, access to a desired scale may depend on the relative
perceived contrast between scales. In addition, access to
a given spatial scale in broadband stimuli may be pre-
vented by competitive cross-scale interactions such as
winner-take-all rules. Examples of this type highlight
how predictions from band-limited studies may fail to
generalize to broadband stimuli. In short, broadband
stimuli are better suited than narrow-band patterns for
determining how spatial scales interact and are combined
in symmetry detection.

In this paper we emphasize the use of stimuli that give
equal perceptual access to information contained in differ-
ent frequency bands of the stimulus. Unlike white noise,
the ensemble of natural scenes is characterized by a
power spectrum that falls roughly as 1/f 2 (Refs. 26–30;
N.B.: 1/f 2 in the power spectrum corresponds to 1/f in
the amplitude spectrum), although the measured spectral
slopes of individual natural scenes exhibit significant
variability across images. This phenomenon was noted
by Field and Brady,31 who reported that, across studies
on natural scenes, spectral slopes vary from 1/f 1.2 to 1/f 3.2

and that averages from different studies fall between
1/f 1.8 and 1/f 2.4. The spectral properties of natural im-
ages have led various researchers to suggest that the
mammalian visual system operates with maximal effi-
ciency when viewing a 1/f 2 distribution of contrast energy
across scales.26,32,33 In particular, Brady and Field25 and
Field26 proposed a model of contrast sensitivity in which
the gain and bandwidth properties of visual cells are con-
figured such that their expected activity profile is flat
across spatial scales only when images with 1/f 2 spectra
are viewed. To a good first approximation, psychophysi-
cal and physiological evidence supports this model of su-
prathreshold contrast sensitivity.1,25,31,34–36–39 Such a
model, in turn, is expected to promote the maximum
transfer of information to higher-level processes such as
those that mediate symmetry detection.

In the following sections we report two psychophysical
experiments designed to investigate the relative contribu-
tions of spatial scales to the detection of symmetry. In
both experiments, stimuli consist of symmetric broadband
noise spatially filtered to one of several 1/f b spectral pro-
files, where b determines the rate of contrast-energy de-
cay as a function of spatial frequency. In the remainder
of the paper, to simplify notation we refer to b as the spec-
tral slope of the stimulus. In the first experiment we
measured symmetry-detection thresholds in noise pat-
terns of variable spectral slope. To the extent that each
spatial scale contributes to symmetry detection, perfor-
mance is expected to peak in images whose spectra fall
within the range that characterizes natural scenes. In
the second experiment we studied the effects of random-
izing the phase spectrum in one of four randomly chosen
constant-octave bands of frequencies. If scales contrib-
ute equally to symmetry detection, then imposing phase
randomization in 1/f 2 images is expected to reduce per-
formance by a constant amount irrespective of which
scale is chosen. Finally, we cast our findings in terms of
a model of human performance that combines across spa-
tial scales and predicts symmetry detection in broadband
noise of variable spectral slope.

2. GENERAL METHOD
A. Observers
The two authors participated as observers in the experi-
ments. SR is slightly myopic and wore optical correction
during trials. FK is an emmetrope and wore no optical
correction.

B. Hardware and Calibration
We carried out all experiments on a Power Macintosh
computer (7100/80) driving a standard 8-bit/gun video
card. Stimuli were presented on a Sony Multiscan 17-in.
display at a resolution of 1024 3 768 pixels. The linear-
ity of the display was measured with a UDT photometer,
and linear gamma correction was provided by a look-up
table derived from least-squares estimates. The display
had an effective look-up table depth of 7.1 bits after
gamma correction and a mean luminance of 33.4 cd/m2.
To prevent pixel underflow or overflow, we thresholded
intensities that fell outside the range defined by the
look-up table below 0 and above 255, although these in-
tensities were extremely rare. Routines from Pelli’s
VideoToolbox40 were incorporated into the software that
was used to display the stimuli.

C. Procedure
Stimuli were presented at display mean luminance and
scaled to 25% rms contrast. Observers viewed stimuli
from a distance of 63 cm, at which patterns subtended 3.2
deg of visual angle. Patterns had square dimensions con-
sisting of 128 pixels on a side, and the spatial-frequency
content of the images was bracketed between 0.3 and 20.0
cpd.

A two-alternative forced-choice paradigm was used in
which observers were presented with a symmetry-present
and a symmetry-absent stimulus on every trial. The or-
der of presentation was randomly interleaved from one
trial to the next. Observers pressed one of two keys to
report the interval that appeared symmetric. Images
were presented for 444 ms (or the equivalent of 30 screen
refreshes at 67.6 Hz) and were separated by an inter-
stimulus interval of 444 ms. No feedback was provided.
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3. EXPERIMENT 1: SYMMETRY
DETECTION AS A FUNCTION OF SPECTRAL
SLOPE
Stimuli consisted of random-noise patterns that varied in
spectral slope and in the amount of vertical mirror sym-
metry they contained. Figure 1 shows examples of
stimuli for three spectral profiles (columns) and four lev-
els of symmetry (rows).

Images were computed on-line with software developed
by the first author. Vertically symmetric white-noise
patterns were obtained by random sampling from a
Gaussian distribution (m 5 0, s 5 1) and assignment of
values to pairs of pixels positioned symmetrically about
the vertical axis, as given by the relationship g(x, y)
5 g(2x, y). The origin g(0, 0) was assigned to the cen-
termost pixel in the image. The continuum of symmetry
levels required for measuring detection thresholds was
obtained by corrupting the symmetric signal with vari-
able amounts of added uncorrelated Gaussian noise. We
define a level of symmetry, denoted j here, as the propor-
tion of total image variance taken up by the signal, in line
with the notion of signal-to-noise ratio commonly found in
the digital signal processing literature. j is given by

j 5
ss

2

ss
2 1 sn

2 , (1)

Fig. 1. Examples of symmetric broadband noise patterns used
in experiment 1. Each row shows three images of equal rms
contrast but that vary in the slope of their power spectra: a–d,
1/f 0; e–h, 1/f 2; and i–l, 1/f 4. Each column shows four patterns
with decreasing amounts of mirror symmetry: a, e, i, 1.0; b, f, j,
0.67; d, h, k, 0.33; and e, i, l, 0.0.
where ss
2 and sn

2 correspond to the variances of the sig-
nal and the corrupting noise, respectively. Levels of
symmetry necessarily fall between j 5 0 (perfectly ran-
dom) and j 5 1 (perfectly symmetric).

Once the white-noise pattern with the desired level of
symmetry was computed, the image was filtered to the de-
sired spectral profile by computing its fast Fourier trans-
form, multiplying that by 1/f b/2, and reverse transforming
it to the spatial domain (N.B.: the spectral-slope constant
must be divided by 2 since filtering must be carried out in
the amplitude domain rather than in the power domain).
Radial frequency f is defined here as f 5 Au2 1 v2, where
u and v represent the dimensions of a two-dimensional
Cartesian frequency coordinate system. Imposing spa-
tial filtering only after symmetry is introduced into the
white-noise pattern prevents the appearance of artifacts
that could have arisen if the left and right halves of the
image had been filtered independently of each other.

Symmetry-detection thresholds were measured in pat-
terns with 1/f b spectral profiles selected from a range of
spectral slopes b(22.0 < b < 5.0) in rough steps of 0.4.
Our selection of spectral slopes concentrated on the frac-
tal range investigated by Knill et al.37 for nonsymmetric
random-noise stimuli but was also extended to lower val-
ues. For each spectral slope, symmetry-detection thresh-
olds were obtained with an adaptive Bayesian method,41

which estimated the level of symmetry that corresponds
to a performance of 81% correct. Each run consisted of
50 trials, and at least 5 runs were made for each spectral
slope unless large error bars prompted additional obser-
vations. Data were pooled within each spectral slope
condition, and a log-invariant Weibull function was used
to fit the psychometric function.

Figure 2 shows symmetry-detection thresholds as a
function of spectral slope for observers SR and FK. De-
spite some variability across observers, detection thresh-
olds clearly follow a distinct U-shaped pattern as a func-
tion of spectral slope. For SR, best performance was
achieved with patterns whose spectral slopes fell between
1 and 2. By comparison, FK’s performance was optimal
for spectral slopes near 2.8. FK’s performance was gen-
erally worse than SR’s by a constant of ;0.05. The mag-
nitude of the effect between best and worse performance
for each observer is significant since correct performance
was maintained at 81% correct despite an approximate
20% decrease in signal energy and a simultaneous 20%
increase in the energy of the corrupting noise. From

Fig. 2. Results from experiment 1. Symmetry-detection
thresholds are shown as a function of spectral slope for observers
SR and FK. Error bars indicate 61 standard-deviation esti-
mates.



S. J. M. Rainville and F. A. A. Kingdom Vol. 16, No. 9 /September 1999 /J. Opt. Soc. Am. A 2115
these data, we note that performance is substantially fa-
cilitated for spectral slopes that fall within the range that
characterizes natural scenes but that facilitation is quite
broadly tuned.

4. EXPERIMENT 2: NARROW-BAND
PHASE RANDOMIZATION
Stimuli for experiment 2 were identical to the ones used
in experiment 1, with the exception that the symmetric
signal in one of four randomly selected frequency bands
was replaced by random noise with the same spectral pro-
file. This technique is equivalent to randomizing the
phase of all frequency components within the chosen
band. Phase randomization is a technique that has been
used in other studies on symmetry perception4,5,13 and
that is increasingly common in other branches of psycho-
physical research.42,43 Our band-selective phase-
randomization paradigm has a considerable advantage
over conventional bandpass stimuli in that it allows us to
study how a single frequency band contributes to symme-
try detection in the presence of other spatial scales. This
is important because effects that are due to scale combi-
nation or cross-scale contrast differences could not be
studied in the context of band-limited stimuli.

Gaussian white-noise patterns with specified levels of
symmetry were obtained exactly as outlined in experi-
ment 1, and the stimuli were notch filtered with one of
four idealized isotropic filters that tiled frequency space
in equal nonoverlapping strips of 1.2 octaves. These
notch filters, denoted here by H( f ), are given by

H~ f ! 5 H 0 if f low < f , fhigh

1 otherwise
, (2)

where f low and fhigh define the lower and upper cutoff fre-
quencies, respectively, of the notch. Table 1 lists, in reti-
nal spatial frequencies, the center frequencies as well as
the f low and fhigh cutoffs of the four notch filters used in
this experiment.

The vacant frequency band left by notch filtering was
replaced by random (i.e., nonsymmetric) white Gaussian
noise filtered with the complement of the corresponding
notch filter. The complement of the notch filter in Eq. (2)
is simply given by H8( f ) 5 1 2 H( f ).

In the first column of Fig. 3 we show four 1/f 2 noise
patterns, each of which lacks mirror symmetry in one of
four octave bands of frequencies. The second and third
columns show the symmetric and phase-randomized fre-
quency bands, respectively. The symmetric component
consists of a notch-filtered 1/f 2 noise pattern with vari-
able amounts of symmetry, just as in experiment 1. The
phase-randomized component consists of perfectly ran-
dom bandpass noise. Visual inspection of patterns in the
first column of Fig. 3 reveals that their statistics are in-
distinguishable from those in the middle column of Fig. 1,
except for the absence of symmetry at one of four spatial
scales. This confirms that phase randomization removes
symmetry without introducing artifacts into the power
spectrum.

Throughout the experiment, symmetry levels were
fixed to the detection thresholds (81% correct) measured
in experiment 1 under the corresponding spectral-slope
conditions. Patterns were presented by a method of con-
stant stimuli in which the band lacking symmetry was
randomly chosen from one trial to the next. To detect po-
tential ceiling effects and to verify that the adaptive pro-
cedure in experiment 1 had approximated the point 81%
correct performance, we designed one fifth of the trials to
contain patterns in which symmetry was not replaced.
The number of spectral slopes was limited to four key con-
ditions (b 5 22, 0, 2, 4) because the space of all possible
conditions is too large to explore should all spectral slopes
of experiment 1 be used.

Fig. 3. Examples of stimuli used in experiment 2. Left column:
Patterns are identical to those of experiment 1, except that infor-
mation in one of four possible octave frequency bands (rows) is
phase randomized. Middle column, symmetric (i.e., nonrandom-
ized) component. Right column, phase-randomized components.
Patterns from the second and third columns are added together
to produce patterns in the first columns. Insets, complementary
band–reject and band–pass filter pairs in the Fourier domain.

Table 1. Spatial-Frequency Parameters of Notch
Filters Used in Experiment 2a

Band fc (cpd) f low (cpd) fhigh (cpd)

1 1.7 1.25 2.2
2 3.4 2.5 4.7
3 7.0 5.0 9.7
4 14.0 10.0 19.7

a Bands are numbered from 1 to 4 in increasing order of center fre-
quency fc . Lower- and upper-frequency cutoffs are given by f low and
fhigh , respectively. All spatial frequencies are expressed in cycles per de-
gree (cpd).
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Figure 4 shows results for the two observers (columns)
and the four spectral slopes (rows).

Results are encouragingly consistent between the two
observers. For a spectral slope of 2, performance drops
by approximately 5–10%, regardless of the band in which
symmetry was replaced, with no significant rise or de-
crease in performance across bands. However, for spec-
tral slopes of 22 and 0, performance is virtually un-
changed by the absence of symmetry in low-frequency
bands but is considerably affected when symmetry is
lacking at high frequencies. For a spectral slope of 4,
both observers show marked reduction in performance at
low frequencies, whereas performance at high frequencies
is comparable with that of the all-band condition shown
by the dashed lines. Moreover, the dashed lines confirm

Fig. 4. Results from Experiment 2. Performance is shown for
two observers (columns) and four spectral slopes (rows). Graphs
plot percent-correct performance as a function of the center fre-
quency of the phase-randomized band. Spectral profiles are in-
dicated along the rows. Dashed lines, performance with symme-
try present in all four bands. Error bars, 61 binomial standard-
deviation estimates.
that the adaptive routine in experiment 1 has, for the
most part, correctly homed in on the 81% mark, although
this is not a critical issue since the thresholds of experi-
ment 1 were used here only to avoid floor or ceiling ef-
fects, which would have masked the trend in the data.

5. DISCUSSION OF RESULTS
Data from the first experiment are compatible with the
notion that symmetry detection in broadband images re-
lies on a wide range of spatial scales, provided that these
scales are roughly equated for visibility. The fact that
performance with patterns whose spectra fall within the
spectral range of natural scenes is better than when ei-
ther high spatial frequencies (e.g., 1/f 0) or low spatial fre-
quencies (e.g., 1/f 4) are perceptually dominant also opens
up the possibility that symmetry mechanisms combine
across scales to achieve better performance. However,
the first experiment by itself does not prove that access to
multiple spatial scales is responsible for better detection
under 1/f 2 conditions. Since each spectral profile used in
this experiment corresponds to a unique level of contrast
energy at each spatial scale, it is conceivable (although
perhaps improbable) that our U-shaped data depend on
the activity of a single channel rather than on a pooling of
channels. In particular, the amount of contrast energy
in the middle-frequency range of the stimulus peaks near
1/f 2 conditions because middle frequencies have little or
no energy in very shallow (e.g., 1/f 22) or very steep (e.g.,
1/f 4) spectral profiles. Unfortunately, changing viewing
distance would only partially solve the problem because
the middle-frequency peak in energy for 1/f 2 profiles is a
property of the stimulus rather than of the visual system.
Should we obtain similar results at a different viewing
distance, another narrow-band channel could be invoked,
and the single-band argument could never be refuted.

Second, even if better performance with 1/f 2 images
were mediated by a pooling of information across scales,
the first experiment offers little indication as to how
much each spatial scale contributes to performance since
results can reflect only the envelope of combined channel
responses. In addition, provided that all spatial scales
contribute positively to the detection of symmetry, perfor-
mance is expected to peak at 1/f 2 irrespective of how spa-
tial scales are weighted in symmetry detection. This
point is admittedly counterintuitive, but it necessarily fol-
lows from the observation that spatial channels such as
those presumed to mediate early vision have thresholds
below which stimulus energy is ineffective.2 Threshold-
ing nonlinearities impose a fundamental limit to the
amount of information that can be transferred to higher
stages of processing, and no postthreshold whitening
scheme could recover the lost information.

For this reason, the value of experiment 1 lies prima-
rily in the demonstration that symmetry detection in
noise is optimal for patterns with natural spectral slopes
and that higher-level processes such as symmetry detec-
tion are not immune to changes in the relative amounts of
contrast energy across scales.

Results from the second experiment offer direct evi-
dence that constant-octave frequency bands contribute
equally to symmetry detection in broadband images, pro-
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vided that they are equated in contrast energy. There
are many implications to these findings. First, we can
refute the possibility raised above that a single narrow-
band channel tuned to middle frequencies could account
for the data of our first experiment since our results re-
veal that symmetry detection relies equally on a wide
range of octave frequency bands. Our results also sug-
gest that symmetry mechanisms are capable of consider-
ing information from different scales in parallel since
stimulus presentations were too brief to use attention to
scan across scales for bands containing symmetry. This
argument is also strengthened by the fact that the fre-
quency band that did not contain symmetry was ran-
domly selected on every trial and that observers could not
have performed the task reliably by focusing attention ex-
clusively at a single scale.

The combined findings of experiments 1 and 2 can be
interpreted as evidence that spatial scales in symmetry
detection are not combined according to some form of
winner-take-all strategy. If winner-take-all rules gov-
erned scale combination, performance in experiment 1
would have remained approximately constant as a func-
tion of spectral slope since the benefit of pooling informa-
tion across scales would have been lost. Although our
methodology does not allow us to determine the precise
rules by which scales are combined in the computation of
symmetry, the gain in performance obtained when sev-
eral scales are accessible is compatible with a cooperative
scheme such as linear or probability summation.44,45

6. MODELING
In this section we first present a brief discussion of what
distinguishes human observers from model observers
with various capabilities and, in doing so, identify key fac-
tors that limit human performance for detecting symme-
try. Following this analysis, we propose a model of hu-
man performance that combines across spatial channels
to predict symmetry detection in broadband noise of vari-
able spectral slope. Finally, we implement our model
and compare its performance with human data from ex-
periments 1 and 2.

A. Model Observers versus Human Observers
Model observers are useful tools for understanding the
physical content of a stimulus and, as such, they highlight
factors that limit human performance. Two separate
and crucial differences between model observers and hu-
man observers are considered here, namely, the extent of
the spatial region over which symmetry is computed and
the ability to whiten stimuli. We discuss each of these in
turn.

1. Spatial Region of Integration for Mirror Symmetry
Model observers rely on unlimited resources and can
therefore consider the entire spatial extent of the stimu-
lus in their computations. By comparison, human ob-
servers detecting mirror symmetry in bandpass noise are
reported to use information only over a few cycles of spa-
tial scale.5 To illustrate the effects of the spatial region
of integration on performance, consider how four model
observers, each equipped with a single bandpass channel,
would perform in a symmetry-detection task such as
those employed in this study. This situation is illus-
trated schematically in Fig. 5A, in which a stimulus of fi-
nite spatial dimensions is processed by four arrays of spa-
tial filters—that is, four channels—each tuned to one of
four different spatial scales (panels a through d) and
where each circle corresponds to the spatial extent of an
individual filter. To maximize access to spatial informa-
tion, each model observer would recruit all available spa-
tial filters. Consequently, the model observer using the
high-frequency channel (e.g., panel a) would invariably
perform better than model observers using lower-
frequency channels (e.g., panels b, c, and d) since the
high-frequency channel has a comparatively large num-
ber of nonoverlapping filters per fixed unit area and can
thus encode a large number of independent bits of infor-
mation. In other words, model observers reveal that the
spatial density of information is proportional to filter
scale and that high-frequency channels are expected to be
more informative than low-frequency channels if the en-
tire spatial extent of the stimulus is taken into account.

Unlike the model observers described above, the hu-
man visual system may elect not to integrate across the
entire spatial extent of the image. The fact that the di-
mensions of the integration region for symmetry in hu-
man vision are proportional to the scale of the stimulus is
a case in point5 and imposes a fundamental limit on how
much symmetry information is integrated by various vi-
sual channels. This is illustrated in Fig. 5A, where spa-
tial filters shaded in gray are those recruited by an inte-
gration region whose dimensions are proportional to filter
scale. Because of the scaling properties of the integra-
tion region in human vision, the number of recruited fil-
ters is constant across channels and, by the same virtue,
the amount of information is also kept constant across
scales. This follows from the theoretical notion that self-
similar filters integrate a constant number of spatial
cycles, irrespective of their scale, but we have also verified
this claim by using numerical simulations.

2. Whitening the Power Spectrum
To maximize the performance of a model observer one can
endow it with the ability to whiten the power spectrum of
the stimulus, a process that consists in removing second-
order correlations such as to weigh all bits of information
equally. To illustrate this we consider a model observer
that has simultaneous access to four constant-octave
channels, each tuned to a different spatial scale. To
achieve maximal performance this model observer could
adjust the gain of each channel based on the contrast
structure of the stimulus such as to equate response
across channels. This adaptive whitening strategy is
highly efficient since it provides equal access to all infor-
mation while rendering the model observer insensitive to
spectral slope (i.e., the relative amount of contrast energy
in each frequency band). However, instead of adaptively
adjusting the gains of channels to match the power spec-
trum of any stimulus, a model observer could tune its
channels to the statistics of a particular ensemble of im-
ages with similar power spectra. Although such an ob-
server would forgo the ability to whiten images whose
power spectra deviate too much from what it expects, this
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may not matter much if deviations from the expected
slope are small. In addition, the implementation of such
an observer may prove to be simpler because the relative
gain of channels can be fixed rather than adaptive.

It appears that the human visual system has adopted
the fixed whitening strategy mentioned above, because
others and ourselves have shown that human perfor-

Fig. 5. A, Schematic representation of four bandpass channels
(a–d) viewing an image of finite dimensions. Individual circles
represent the spatial extent of filters that constitute each chan-
nel. Circles shaded in gray represent filters recruited by an in-
tegration whose dimensions are proportional to the filter scale.
B, Output from four channels (a–d) viewing a perfectly symmet-
ric 1/f 2 noise pattern. Channels are spatially limited by a
Gaussian region of integration, and underlying filters have
constant-octave frequency bandwidths and constant-volume
point-spread functions.
mance is not immune to variations in spectral slope and
that access to information is maximized primarily for
stimuli whose spectral slopes are similar to the ones that
characterize natural scenes. This nonadaptive whiten-
ing strategy is illustrated in Fig. 5B, where we show the
raw response of four bandpass channels to perfectly sym-
metric 1/f 2 noise. Channels are spatially restricted by
an integration region whose dimensions are proportional
to the scale of the analysis, and their underlying spatial
filters have constant-volume point-spread functions and
constant-octave frequency bandwidths that collectively
act as a fixed whitening filter tuned to images with 1/f 2

power spectra. Note that all four channels respond with
roughly equal amplitude and that this response is inde-
pendent of the area covered by the integration region. If
spectral slopes deviate too much from 1/f 2, these chan-
nels do not respond equally.

In this subsection we have compared the performance
of model and human observers to isolate two key compo-
nents that determine human performance, namely, the
integration region for symmetry and the inability to
whiten images whose power spectra deviate substantially
from those of natural scenes. In the following subsection,
we incorporate these and other known components of hu-
man vision into a model of symmetry detection in broad-
band noise patterns of variable spectral slopes.

B. Model of Human Performance
Our model observer consists of four linear channels com-
posed of spatial filters that tile the frequency domain into
isotropic log-Gaussian bands of 1.1 octaves. Channels
have peak frequencies that are logarithmically spaced
from 5.7 to 45.3 cpi, and their underlying filters have
equal peak amplitudes in the Fourier domain. The Fou-
rier kernel of filters from the nth channel is given by

Hn~u, v ! 5 expH 2
1

2 F ln~ f/fn!

ln~ fns!
G2J , (3)

where fn is the channel’s peak frequency and s deter-
mines the channel’s frequency bandwidth in octaves.
The spatial profile of filters from the nth channel is given
by the reverse Fourier transform of H, namely, hn(x, y)
5 F21@Hn(u, v)#. Since all frequency components of H
are set to cosine phase, filters obtained by the reverse
Fourier transform are spatially localized.

In the spatial domain, each channel is restricted by a
Gaussian window that limits the region over which sym-
metry is integrated. We define the window w of the nth
channel as

wn~x, y ! 5 expF2
~x 2 x0!2

2sn
2 GexpF2

~ y 2 y0!2

2sn
2 G , (4)

where x0 and y0 determine the window’s spatial location
and sn determines the window’s width and height dimen-
sions. To maintain a constant amount of information
across scales, we keep the dimensions of the integration
region proportional to the filter scale; that is, sn is in-
versely proportional to the channel peak frequency as
given by sn 5 k/fn , where k is a scaling constant that for
the purpose of our model is set to 1. Although Dakin and
Herbert5 report that the integration region is elongated
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by approximately a factor of 2:1 along the axis of symme-
try, our model assumes a circular window since the pre-
cise shape of the integration region is not crucial to the
model’s behavior.

Having specified the nature of the channels, their un-
derlying filters, and the spatial region that they cover, we
can obtain the response of the nth channel C for stimulus
I by

Cn~x, y ! 5 wn~x, y !@hn~x, y ! ^ I~x, y !#, (5)

where ^ denotes the convolution operator. Figure 5B
(panels a–d) illustrates the raw output of each of the four
channels when presented with a perfectly symmetric 1/f 2

noise pattern. Note how the response amplitude is simi-
lar across channels and also how the integration region
decreases as a function of spatial frequency to let through
only ;4 spatial cycles of information before tapering off.

Our model assumes that mirror symmetry is computed
separately for each channel and that measures of symme-
try are subsequently combined by use of a probability
summation that weighs each channel by its contrast re-
sponse. Our measure of symmetry for the nth channel is
denoted by Sn and is given by

Sn 5

(
y

(
x51

X/221

uCn~x, y !Cn~2x, y !u

F(
y

(
x51

X/221

Cn~x, y !2(
y

(
x51

X/221

Cn~2x, y !2G 1/2 . (6)

The measure Sn consists essentially of a cross correlation
between the spatial structure on one side of the axis and
the mirror reflection of the other side. We are aware that
measuring symmetry in this way is mathematically
convenient6 and that more physiologically plausible
implementations of symmetry-detection mechanisms (in-
cluding our own) have been proposed.4,8,12 However, the
focus of our model is on scale combination rather than on
the mechanisms that actually carry out the computation
of symmetry. Using cross correlation takes away little
from the relevance of our model to scale combination in
symmetry perception, but the replacement of Sn by other
measures of symmetry can be accommodated easily if
strict compliance with physiological principles is desired.

We have shown in both experiments that human ob-
servers lack the ability to whiten stimuli; this follows di-
rectly from the fact that human performance varies as a
function of spectral slope. Our model, however, would be
insensitive to contrast differences in various frequency
bands if it simply measured symmetry separately for each
channel and then combined these measures across chan-
nels without first weighting them. For instance, if one
channel received less contrast energy than a second chan-
nel, the two channels would each return a measure of
symmetry bounded between 0 and 1, but these measures
would not reflect whether contrast activates one channel
more strongly than the other. Thus, for model perfor-
mance to depend on spectral slope, Sn must necessarily
be weighted by some function on the response magnitude
of channel Cn before the stage where Sn is pooled across
channels. To do this weighting we need to define a met-
ric for the magnitude of channel response.
Ideally, a metric of channel response would reflect local
rather than global amplitude. To illustrate this distinc-
tion we consider again Fig. 5B. Although the four chan-
nels respond with the same amplitude to 1/f 2 noise, their
global contrast energy is not the same because low-
frequency channels have larger integration regions and
consequently integrate energy over larger spatial extents
than high-frequency channels. For this reason, a metric
based on mean energy (e.g., rms) would be inappropriate
since it would report that filters bounded by the integra-
tion region do not respond equally to 1/f 2 noise. By com-
parison, a metric such as Michelson contrast would cor-
rectly show that filters in the integration region respond
equally to 1/f 2 noise, but because this metric uses mini-
mum and maximum values in its computations it is inher-
ently unreliable with stochastic stimuli such as random
noise. A better metric of channel response consists in
computing what we call local energy density (LED), a
measure that essentially integrates contrast energy over
a region of specified dimensions and divides by the area of
this region. We define LED for the nth channel as

LEDn 5
(( @Cn~x, y ! 2 C̄n#2

sn
2

, (7)

where contrast energy is integrated over the whole spa-
tial extent of channel Cn and is divided by a factor that is
proportional to the area of the integration region, namely,
sn

2. Using numerical simulations, we verified that the
LED metric is constant across channels for images with
1/f 2 power spectra. Our LED metric is similar to rms
contrast with the exception that it takes into consider-
ation the area over which contrast energy is distributed,
much like the ‘‘rectified contrast spectrum’’ metric pro-
posed by Field and Brady.31

The purpose of using LEDn to weigh Sn is to tune our
model specifically to images with 1/f 2 power spectra.
However, it also makes our model heavily dependent on
the overall contrast of the stimulus. For instance, the
model would erroneously report that the amount of sym-
metry in a stimulus increased by a factor of 2 if its overall
contrast were doubled. To prevent this, our model
weighs Sn by relative LED across channels rather than
by the absolute LED. We denote the relative LED for the
nth channel by an , a measure obtained by normalizing
the LED of each channel by the sum of LED’s from all
channels, as given by

an 5
LEDn

(
n

LEDn

. (8)

This procedure effectively acts as a broadly tuned gain
control mechanism that scales the outputs of all channels
by a constant such that their cumulative output sums to
1.

To combine measures of symmetry Sn across channels
and form a composite measure S, we first weigh Sn by
relative LEDn , namely, an . We then use the Quick pool-
ing rule,46 which assumes an exponent p of 2.0 that cor-
responds to probability summation given by
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S 5
Ap (

n
~anSn!p

N
. (9)

We have no a priori reasons for selecting probability sum-
mation over, say, linear summation ( p 5 1.0) apart from
the fact that probability summation across channels is
frequently encountered in studies of vision.44,45 How-
ever, as we mentioned above, competitive interactions be-
tween channels such as winner-take-all rules ( p 5 `) are
unlikely since the win of a single band is not expected to
lead to better performance even when all spatial scales
are equally visible. The scalar value S constitutes the
model’s judgment of mirror symmetry and falls on a con-
tinuum bounded by 0 (perfectly random) and 1 (perfectly
symmetric).

C. Simulations
We implemented our model in the MATLAB environment
and presented our model observer with stimuli generated
in the same manner as for experiments 1 and 2. For
each stimulus the model returned a single value S [see
Eq. (9)] that corresponded to its judgment of symmetry.
We describe the simulations and their results for each of
the experiments.

For the simulation of experiment 1 the model measured
symmetry in 250 symmetric–nonsymmetric stimuli pairs
for each cell of a 15 3 7 matrix containing 15 spectral
slopes (b) and 7 levels of symmetry (j). The 14 spectral
slopes covered the range 22 < b < 5 in equal steps of
0.5, and the 7 levels of symmetry covered the range 0
< j < 1 in equal steps of 0.5. Overall, the model judged
symmetry in 58,702 images. Once the simulation was
completed, we computed d8 for each cell of the 15 3 7 ma-
trix by comparing judgments for symmetric and nonsym-
metric stimuli. d8 is a dimensionless measure of the
ability of the model to discriminate between symmetric
and nonsymmetric images that bears a monotonic rela-
tionship to percent correct.47,48 For each spectral slope
we fitted a separate exponential function to d8 versus j
and estimated the level of symmetry that corresponded to
81% correct performance in a two-alternative forced-
choice task, namely, d8 5 1.24. Model performance for
this experiment is plotted in Fig. 6A and should be com-
pared with human performance as shown in Fig. 2.

Results from this simulation reveal that the model
shows significant facilitation for images with 1/f 2 power
spectra and performs more poorly for spectral slopes that
are either steeper or shallower than 1/f 2. Although the
peak in model performance is considerably sharper than
in human performance, the model’s symmetry-detection
thresholds fall roughly within the same range as human
data (0.35 < j < 0.65) and is optimally sensitive to im-
ages with power spectra similar to those of natural
scenes.

For experiment 2 the model measured symmetry in 250
symmetric–nonsymmetric stimuli pairs for each cell of a
4 3 4 matrix that correspond, respectively, to 4 spectral
slopes and 4 phase-randomized frequency bands. In all,
the model evaluated symmetry for 8,000 images. The
four spectral slopes are those of experiment 2, namely, b
5 22, 0, 2, 4. The four frequency bands are exactly 1 oc-
tave wide, and their center frequencies are logarithmi-
cally spaced from 5.7 to 45.3 cpi. These center frequen-
cies coincide with those of the four channels used in our
model to speed up computations, but the qualitative be-
havior of the model would not be affected if more channels
were involved, provided that their center frequencies
were logarithmically spaced. As with experiment 2, only
one of the four octave bands was phase randomized for
each stimulus presentation. For the purpose of compari-
son, we also included a condition in which none of the
bands was phase randomized. To maintain model perfor-
mance in roughly the same range as that of human ob-
servers, we set the level of symmetry for the entire simu-
lation to j 5 0.5. Once the simulation was complete,
values of d8 between judgments made on symmetric and
nonsymmetric images were computed separately for each
cell of the 4 3 4 matrix. Values of d8 were also mea-

Fig. 6. Modeling results. A, Simulation for experiment 1.
Symmetry-detection thresholds are plotted as a function of spec-
tral slope. Results should be compared with human perfor-
mance (Fig. 2). B, Simulation results for experiment 2. Model
performance (d8) plotted as a function of the center frequency of
the randomized octave band. Dashed line indicate reference
performance when no bands are phase randomized. Perfor-
mance is shown for power spectra of 1/f 22, 1/f 0, 1/f 2, and 1/f 4.
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sured for the comparison condition in which none of the
bands was phase randomized. Model performance for
this simulation is shown in Fig. 6B and should be com-
pared with human performance in Fig. 4.

From this simulation we note that the model performs
in a similar way to human subjects. For spectral slopes
that are shallower than 2, the model overemphasizes high
spatial frequencies and does not have the capability to
whiten the image to equate performance across channels.
For spectral slopes greater than 2, the model relies too
heavily on low frequencies and again lacks the ability to
whiten the stimulus. However, for a spectral slope of 2,
phase randomizing of constant-octave frequency bands
produces equal deficits in performance across all chan-
nels. Note that, unlike for human observers, perfor-
mance is overall better for 1/f 2 condition. This, however,
is simply a consequence of the fact that the level of sym-
metry for the simulation was fixed to j 5 0.5 for all spec-
tral slopes, whereas the levels of symmetry for human ob-
servers were set separately for each spectral slope to
avoid floor and ceiling effects to which d8 is immune.
In this section we have shown that the main results from
both experiments are qualitatively well predicted by a
model that combines across spatial channels with
constant-octave bandwidths and equal peak sensitivities
but that integrates symmetry over a region whose dimen-
sions are proportional to spatial scale. Our model also
correctly predicts that symmetry detection in broadband
images relies equally on all spatial scales, provided that
the contrast structure of the stimulus matches the spec-
tral profile expected from natural scenes. Although our
model makes several assumptions about early spatial vi-
sion, we believe it nonetheless captures some of the key
aspects of the spatial mechanisms that mediate the detec-
tion of symmetry in broadband noise patterns.

7. GENERAL SUMMARY
The present study has produced the following findings:

• Symmetry detection is optimal in noise patterns
whose spectral slopes fall within the range that charac-
terizes natural scenes (1.2 < b < 3.2).

• Symmetry detection in noise patterns is affected
equally by the phase randomization of constant-octave
frequency bands only for 1/f 2 power spectra.

• Together, our results imply that symmetry mecha-
nisms extract equal amounts of information across scales
but that the visual system lacks the ability to whiten im-
ages whose spectral slopes deviate substantially from
those of natural scenes.

• Symmetry detection in broadband noise is qualita-
tively well predicted by a multichannel model in which
contrast-weighted symmetry judgments from all channels
are combined through probability summation into a
single metric. The key components of the model are (a)
an integration region whose dimensions are proportional
to filter scale and that keeps a constant amount of infor-
mation across scales and (b) linear spatial filters with
constant-volume point-spread functions and constant-
octave bandwidths that determine access to spatial scales
and effectively tune the model to images with 1/f 2 power
spectra.

8. GENERAL DISCUSSION
Results from this study are consistent with the notion
that the detection of symmetry is efficient and is inti-
mately tied to the spatial characteristics of filtering
mechanisms that mediate early vision. As mentioned in
Section 1, several authors have suggested that early vi-
sual mechanisms are optimally tuned to second-order sta-
tistics (i.e., the power spectrum) of natural scenes. In
particular, since spatial filters have roughly equal Fourier
amplitudes and constant-octave bandwidths, filter out-
puts are approximately constant across spatial scales in
images with 1/f 2 spectral profiles. Although these con-
stant outputs ensure access to a vast selection of spatial
scales, little would be accomplished if subsequent stages
of processing did not use spatial scales equally in their
analysis. In line with this idea, we have shown that sym-
metry detection is optimal with patterns whose power
spectra approximately match the second-order statistics
of the ensemble of natural scenes and that symmetry
mechanisms weigh constant-octave frequency bands
equally. Consequently, symmetry detection takes advan-
tage of the efficiency of lower-level mechanisms tuned to
the statistics of natural scenes.

At first glance, our proposal that symmetry detection is
efficient is not well supported by the fact that the integra-
tion region has been shown to vary with the spatial scale
of the stimulus.5 In fact, a constraint of maximal effi-
ciency such as an ideal observer (see Section 6) would de-
mand that symmetry be computed over the entire visual
field rather than over roughly 4 cycles of spatial scale.
However, for a biological visual system such as ours, effi-
ciency is perhaps better expressed as the optimal compro-
mise between selecting mechanisms that encode key in-
formation for survival and limiting the neural costs of
implementation. Restricting the region of integration for
symmetry to a few cycles at each spatial scale may reduce
neural costs and may also be optimal in the sense that it
distributes the information load evenly across spatial
channels. In addition, encoding symmetry information
over large regions is perhaps not the optimal strategy be-
cause mirror symmetry in natural scenes is imperfect and
is likely limited to spatial regions near the axis.

It is perhaps worth restating that channels with
constant-octave bands of frequencies are not expected to
contribute equally to the detection of features that, unlike
symmetry, are computed over the entire extent of the
stimulus. As we mentioned in Section 6, high spatial fre-
quencies are intrinsically more informative than low fre-
quencies simply because the spatial density of informa-
tion is proportional to the scale of the filter used. In the
case of symmetry, the integration region depends on the
spatial frequency of the stimulus and serves to keep the
amount of information constant across scales. However,
should a similar experiment be carried out with a feature
other than mirror symmetry, performance might still be
optimal with 1/f 2 profiles, but high frequencies might be
overrepresented if neural computations were not re-
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stricted to a fixed number of cycles at each spatial scale.
Perhaps constructing a stimulus that physically limits
the information content to a few cycles at each spatial
scale would partially solve this problem.

9. CONCLUSIONS
The present study has shown that symmetry detection in
broadband noise is well predicted by a model that relies
on a bank of linear spatial filters of various scales. Al-
though such a linear filtering stream may be an impor-
tant component of symmetry detection, it is difficult to
generalize our findings to other classes of symmetric
stimuli since random noise lacks the higher-order statis-
tics needed to reveal mechanisms that may detect sym-
metry through nonlinear filtering or feature matching.
Challenges for the future are to characterize the proper-
ties of the various mechanisms that mediate the compu-
tation of mirror symmetry and, ultimately, to integrate
them into a comprehensive account of the perception of
symmetry and visual form in general.
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