
1 Introduction
The idea of decomposing an image into its reflectance and shading components,
a process referred to as `intrinsic image segmentation', was first introduced by Barrow
and Tenenbaum (1978). Figure 1 illustrates the principle. In simple mathematical terms
an image, I (x, y), can be considered as the product of a reflectance image, R(x, y), and
a shading image, S(x, y):

I (x, y) � R(x, y)S(x, y) . (1)

The term reflectance, as used here, includes both spectral as well as intensive
reflectance, corresponding respectively to the perceptual dimensions of lightness and
colour. The term shading, as used here, encompasses two forms of spatially non-uniform
illumination: the first, shading, which is, strictly speaking, the variation in luminance
caused by a change in the angle of a surface with respect to the direction of illumina-
tion; the second, shadows (or c̀ast' shadows), formed by occlusion of the light source.
Although others have employed terms such as `illumination image' to describe the
pattern of non-uniform illumination in an image (Barrow and Tenenbaum 1978), we will
use the term `shading' because it is less ambiguous than the term `illumination', which
is used not only to refer to spatially non-uniform illumination but also to the light source.
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Abstract. We present an algorithm for separating the shading and reflectance images of photo-
graphed natural scenes. The algorithm exploits the constraint that in natural scenes chromatic
and luminance variations that are co-aligned mainly arise from changes in surface reflectance,
whereas near-pure luminance variations mainly arise from shading and shadows. The novel
aspect of the algorithm is the initial separation of the image into luminance and chromatic image
planes that correspond to the luminance, red ^ green, and blue ^ yellow channels of the primate
visual system. The red ^ green and blue ^ yellow image planes are analysed to provide a map of
the changes in surface reflectance, which is then used to separate the reflectance from shading
changes in both the luminance and chromatic image planes. The final reflectance image is
obtained by reconstructing the chromatic and luminance-reflectance-change maps, while the shad-
ing image is obtained by subtracting the reconstructed luminance-reflectance image from the
original luminance image. A number of image examples are included to illustrate the successes
and limitations of the algorithm.
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Figure 1. Decomposition of an image into its reflectance and shading components.
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The separation of an image into its shading and reflectance images is an ongoing
research topic in both human and computer vision. In human vision, the ability to dis-
criminate shading from reflectance variation is important for a variety of visual tasks,
perhaps the most obvious being the identification of the lightness of surfaces that lie
in shadowöie the achievement of lightness constancy (Gilchrist 1979; Gilchrist et al
1983; Arend 1994). Discriminating reflectance from shading is also necessary for shape-
from-shading (Lehky and Sejnowski 1988; Ramachandran 1988; Bergstro« m 1994; Sun
and Perona 1997), recognising objects from shadows (Cavanagh and Leclerc 1989), and
identifying the direction of object motion from shadow trajectories (Knill et al 1996).

The first computer vision algorithm aimed at separating reflectance from shading
was the retinex model of Land and McCann (1971). The goal of the retinex was to recover
the reflectance of surfaces in the context of gradual illumination gradients, and to this
end it was successful. A problem with the retinex, however, as noted by a number of
researchers (eg Arend 1994; Finlayson et al 2002b), is that illumination gradients are not
always gradual; shadows often have sharp edges, and the retinex would tend to recover
these as reflectance changes. Finlayson et al (2002b) have recently developed a modified
version of the retinex that avoids this problem by allowing the user to select the
luminance gradients to be removed depending on whether they are shading or reflec-
tance gradients. Other types of prior knowledge, for example of the illumination source
and the surface composition of the scene, have also been exploited in reflectance ^ shading
separation algorithms (Gevers and Stockman 2000). Yet another approach has been to
use multiple images of a scene photographed under different lighting conditions, with
the reflectance map being the component common to all images (Weiss 2001).

Most recently, the computer vision community has exploited colour information
for reflectance ^ shading separation (Finlayson et al 2002a, 2002b; Tappen et al 2003).
The basic idea is as follows. Shading, unlike reflectance, is almost exclusively lumi-
nance-defined; although sometimes tinged with colour (for example blue when formed
in sunlight), shading tends to have minimal colour contrast (Pärraga et al 2002).
Objects, on the other hand, tend to vary in spectral as well as intensive reflectance,
that is they are both luminance- and colour-defined. These relationships are illustrated
in figure 3, which shows a shadow falling across a grass/pavement border. The shadow is
primarily a change in luminance (bright to dark), whereas the grass/pavement border
is a change in both colour (green to grey) and luminance (dark to light). Colour is
therefore a potential cue for helping disambiguate shading from reflectance variations
through the following rules: luminance variations that are accompanied by colour
variations are variations in reflectance; luminance variations that are unaccompanied
by colour variations are variations in illumination (Rubin and Richards 1982; Cavanagh
1991; Mullen and Kingdom 1991; Fine et al 2003; Tappen et al 2003). Recently one of
us has provided compelling evidence from the study of shape-from-shading that the
human visual system has in-built knowledge of these rules (Kingdom 2003).

The principle behind the computer vision algorithms that exploit colour for shading ^
reflectance separation is to classify image discontinuities based on an analysis of
the relationships between corresponding points in the R,G,B planes of an image.(1)

Specifically, if the ratio between pixel values on either side of a discontinuity is near-
equal in all three R,G,B planes, the discontinuity is classified as shading; and if not,
reflectance. Once classified, the discontinuities are preserved as derivatives, and the
resulting classified-derivative maps reintegrated to produce the shading and reflectance
images. These algorithms are undoubtedly the most successful to date.

(1) The R,G,B planes of an image result from filtering the image through three overlapping spectral
sensitivity functions whose peaks roughly correspond to the long, middle, and short wavelength
parts of the visible spectrum. These might be the red, green, and blue sensors of a digital camera,
or the red, green, and blue phosphors of a CRT monitor.
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The algorithm presented here, while adopting a similar approach to some of the
algorithms described above in terms of constructing reflectance and shading images
from derivative maps, differs from previous colour-based algorithms in the way that
the colour information is analysed. Rather than basing the classification process on the
relationships between the R,G,B planes of an image, we base them on the relationship
between image planes that correspond to the luminance, red ^ green, and blue ^ yellow
channel responses of the primate visual system (De Valois 1965; Macleod and Boynton
1979; Derrington et al 1984; Sankeralli and Mullen 1997). It has been argued that the
luminance, red ^ green, and blue ^ yellow channels of the primate visual system are an
efficient way of coding the intensive and spectral content of natural images (eg see
Wandell 1995). Our algorithm uses the fact that shading discontinuities will be present
to a significant degree only in the luminance image plane, whereas reflectance changes
appear in all three image planes.

Our algorithm represents an alternative method for the quick estimation of shading
and reflectance based on the use of colour information. We stress at the outset
that we make no claims regarding the superiority of our algorithm compared to its
predecessors. Nor do we maintain that our algorithm represents an accurate model
of how the primate visual system separates shading from reflectance variations.
In particular, the reconstruction of shading and reflectance images from derivative
maps via integration may have no counterpart in any biological visual system.(2)

Furthermore, colour is only one of a number of cues available for separating
reflectance from shading, as evidenced by our ability to identify shading in black-and-
white images. Our aim is to explore the feasibility of basing reflectance ^ shading
separation on the colour-opponent channels of primate vision, as these channels are
likely to play an important role in the segmentation of `intrinsic-images' in primates
(Kingdom 2003).

2 The algorithm
A flow diagram of the algorithm is provided in figure 2. The individual steps are listed
below.

Step 1. Conversion to L,M, S images
All images were photographed with a Nikon Coolpix 5700 digital camera, whose gammas
and R,G,B sensor spectral sensitivity functions had been calibrated. Each R,G,B
digital image was gamma-corrected and then converted to an L,M,S digital image,
where L,M,S stands for images filtered through the spectral functions of, respectively,
the long-wavelength-sensitive, middle-wavelength-sensitive, and short-wavelength-sensitive
cones of the human visual system. Note that R,G,B and L,M,S refer to two-dimensional
images, and are thus abbreviations for R(x, y), G(x, y), etc, where x and y are pixel
coordinates. The abbreviated form RGB, LMS etc will be used throughout the text.

A brief exposition of the camera calibration process and method for generating
the LMS images is provided in Appendix 1, while full details can be found in the McGill
colour-calibrated image database (http://tabby.vision.mcgill.ca/), where the images shown
in figure 4 can also be viewed and downloaded.

(2) The idea that there exists a stage in human vision analogous to integration is controversial.
Integration is a defining characteristic of a number of models of lightness processing, of which the
retinex (Land and McCann 1971), Gilchrist et al's edge-integration (Gilchrist 1979; Gilchrist et al
1983) and later anchoring model (Gilchrist et al 1999) are probably the best known (see also Arend
1994, and review by Kingdom and Moulden 1988). Integration is arguably implicit in `filling-in'
models of early vision (eg Grossberg and Todorov|̈c 1988; Pessoa et al 1998). However, a number
of recent models of brightness/lightness perception do not employ an integration stage (Blakeslee
and McCourt 1999, 2004; Dakin and Bex 2004). In these models, relatively coarse-scale filters
instantiate `filling-in' at a relatively early stage in visual processing.
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Final result

Reflectance image

Shading image
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LMS cone responses
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Figure 2. Flow diagram of the algorithm. 1öLMS image conversion; 2öcombination of LMS
images into LUM, RG, and BY image planes; 3öbinarisation of the RG and BY images; 4ölocation
of reflectance edges; 5öclassification of reflectance derivatives; 6öreintegration of the reflec-
tance image; 7öextraction of the shading image. Steps 5 to 6 were repeated for each LUM,
RG, and BY image plane.
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Figure 3. Shadow falling across the grass/pavement
border. The shadow is primarily a change in luminance
(bright to dark), whereas the grass/pavement border is
a change in both colour (green to grey) and luminance
(dark to light).

(a)

(b)

(c)

(d)

Original image Reflectance image Shading image

Figure 4. Examples from the algorithm: (a) face, (b) shadow of a leaf projected onto the ground,
(c) close-up of a plastic container with a shadow projected onto it, (d) two hands projecting a
shadow onto the pavement in a parking lot.
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Step 2. Combining the L,M, S images
Conventionally, the three post-receptoral channel responses of the primate visual system
are modelled in terms of combinations of three cone-contrast values: DL=L, DM=M, and
DS=S. For example, the red ^ green channel is typically modelled as DL=Lÿ DM=M
(Norlander and Koenderink 1983; Stromeyer et al 1985; Cole et al 1993; Sankeralli
and Mullen 1997). The denominator in each cone-contrast term represents the level
of cone adaptation, and is typically calculated as the cone response to the DC of
the stimulus. While arguably appropriate for simple stimuli such as gratings or noise
patterns presented briefly, where one can assume a uniform level of adaptation, cone-
contrast definitions with fixed denominators based on the DC level of the image are
inappropriate for natural scenes where adaptation levels are likely to vary across the
image. In particular, chromatic image planes generated with cone-contrast definitions
with fixed denominators will tend to pick up shadows, even if those shadows are
devoid of colour contrast in the sense that they produce equal ratio changes in all
three cone responses across space. Considerations such as these have led us to use
the following `shadow-invariant', pixel-based definitions of colour-opponent responses
as used by Pärraga et al (1998):

LUM � L�M ,

RG � LÿM

LUM
, (2)

BY � Sÿ 1
2
LUM

S� 1
2
LUM

,

where L, M, and S are the input cone-filtered images, and RG, BY, and LUM are the
output red ^ green chromatic, blue ^ yellow chromatic, and luminance image planes.

Step 3. Binarisation of the chromatic images
In this stage we combined the information from the RG and BY images as a first step
towards establishing the location of reflectance changes. We first determined the range
of values (r) in the BY image. The reason for obtaining r from the BY image plane
is because the BY image is the more likely of the two chromatic images to pick up
shading (for instance, blue shadows due to sky light). r was calculated as follows:

r � max�BY� ÿmin�BY� , (3)

where min (BY ) and max (BY ) stand for the minima and maxima values of the BY
image plane. The RG and BY images were then combined to produce a single image
termed Rmap as follows:

if �a 4 r 5 b) fRmap � �RG 4 0�x or �BY 5 0�g
otherwise fRmap � �RG 4 TRG � and �BY 5 TBY �g ,

(4)

where the threshold values of a and b were set to 0.8 and 1.6, respectively. These
values were found as the min and max average values of 25 BY image planes
taken from different images. TRG and TBY are values computed as TRG � RGÿ sRG and
TBY � BYÿ sBY . RG and BY are the means of the individual chromatic image planes
analysed; sRG and sBY are their standard deviations.

Step 4. Locating reflectance edges
The boundaries in the binary Rmap, which define the locations of the reflectance
changes, were then identified with the use of the Canny edge-detector algorithm (Canny
1986). The resulting edge-map is termed Emap . Since the actual edge-detector algorithm
employed is not critical, the details of implementation are given in Appendix 1.
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The choice of the Canny edge-detector is somewhat arbitrary, and other edge-detectors
such as the Sobel (Jain et al 1995), would probably work as well.

Step 5. Classification of reflectance derivatives
The purpose of this stage was to compute and classify the image derivatives (or local
changes) of the RG, BY, and LUM image planes. The simplest discrete approximation
to compute the derivatives within an image along the x and/or y coordinates is the
difference between two adjacent pixels. This was implemented by convolving the image
with a filter mask:

Dx � I*fx and Dy � I*fy , (5)

where I could be any of our image planes, * denotes convolution, Dx and Dy are the
resulting image derivatives and the filter masks are defined as fx � [1, 0, ÿ1] and
fy � [1, 0, ÿ1] 0.

Once the image derivatives of each image plane have been computed, they are
classified according to the reflectance edge-map (Emap ). Specifically, all derivatives in
the RG, BY, and LUM image planes not present in Emap are removed by setting them
to zero. The effect of this operation will primarily be to remove all the derivatives
from the LUM image that are due to shading.

Step 6. Reintegration of reflectance image
In order to obtain the reflectance image it was necessary to reintegrate each of the
classified RG, BY, and LUM derivative planes (Finlayson et al 2002a). We employed
the technique described by Weiss (2001), which involves finding the pseudo-inverse of
an over-constrained system of derivatives. Briefly, if fx and fy are the filters used to
compute the derivatives in the x and y directions, and LUMx and LUMy are the
classified reflectance derivatives of the LUM image plane, the reconstructed reflectance
image LUMr (x, y) is given by:

LUMr �x, y� � g*f� fx �ÿx,ÿ y�*LUMx � � � fy �ÿx,ÿ y�*LUMy �g , (6)

where * denotes convolution, fx (ÿ x,ÿ y) is a reversed copy of fx (x, y), and g is the
solution of

g*f� fx �ÿx,ÿ y�*LUMx � � � fy �ÿx,ÿ y�*LUMy �g � d. (7)

The reflectance image, derived from the RG and BY image planes is found in the
same way. An interesting property of this technique is that the computation can be
performed with a fast Fourier transform (FFT), which speeds up computation. More
details about this technique can be found at http://www.cs.huji.ac.il/�yweiss/.

Step 7. Obtaining the shading image
The shading image was obtained in one of two ways: (a) by subtracting, in the logarithm
domain, the original luminance image plane from the reconstructed luminance-
reflectance image plane, or (b) by reintegrating the LUM image derivatives that were
not classified as reflectance changes in step 5.

Finally, the full spectral and intensive reflectance image was obtained by transform-
ing the LUM, RG, and BY reconstructed image planes back into the LMS image by
using the following equations:

S � ÿLUM�1� BY�
2�BYÿ 1� ,

M � LUM�1ÿ RG�
2

,
(8)

L � LUMÿM .
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Notice that the LMS images shown in the paper were converted to RGB images for
display.

3 Results
Example results are shown in figure 4. In each figure, most of the shading and
reflectance patterns have been successfully separated into two images. There are notable
failures, however. For example, in figure 4a, part of the frame of the glasses appears
incorrectly in the shading image, and some of the shading below the chin is present in
the reflectance image. That the algorithm is not robust when dealing with very strong
cast shadows is also revealed in figure 4d, where part of the shadow appears in the
reflectance image. Nevertheless, the examples demonstrate that the algorithm results in
reasonable reflectance ^ shading separation.

The algorithm described here is based on the postreceptoral channels of the primate
visual system, that is through the use of RG, BY, LUM image planes formed from the
combination of L, M,S cone-filtered images. We have found, however, that generating
the RG, BY, LUM image planes from the R,G, B gamma-corrected camera responses
appears to work just as effectively, suggesting that the precise shape of the spectral
functions underlying the initial transformation of the image is not critical. It remains
to be determined if there are any advantages, or disadvantages, of basing reflectance ^
shading separation on an analysis of RG, BY, LUM image planes, as opposed to the
R,G,B image planes of previous colour-based algorithms (Finlayson et al 2002a, 2002b;
Tappen et al 2003).

4 Future work
There are a number of avenues that could be explored to improve the performance of
the algorithm. For example, we have not optimised the relative weights given to the
RG and BY image planes in the stage that identifies reflectance changes (step 5).
Optimum weights could be obtained via an examination of the magnitudes and types
of colour contrast observed across the range of shadow/shading boundaries found in
natural scenes.

One of the main motivations for the use of colour in our algorithm is that the human
visual system appears to exploit colour information for intrinsic-image segmentation.
However the evidence for this comes from studies that use relatively simple stimuli, such
as sine-wave plaids or Mondrian-like patterns (Kingdom and Kasrai 2002; Kingdom
2003; Kingdom et al 2004). To our knowledge, there is as yet no psychophysical evidence
that colour information is used by humans for intrinsic-image segmentation in natural
scenes. One possible way to test whether colour is used for this purpose would be to
employ algorithms such as the one described here to completely, or partially, remove
shading from natural colour images, and test whether observers are better able to
discriminate the with-shading from the without-shading images when they are in colour
compared to black-and-white. It might also be interesting to compare normal observers
with colour-deficient observers on such tasks.

5 Conclusion
We have described an algorithm that separates the reflectance and shading components
of natural images. The algorithm exploits colour information represented in a form
corresponding to the response of the postreceptoral chromatic and luminance channels
of the primate visual system. The algorithm is reasonably successful, but in its present
form is not robust to strong cast shadows. Reflectance ^ shading separation algorithms
may have a practical use in exploring intrinsic-image segmentation in biological vision
systems.
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Appendix 1: Camera calibration and generation of LMS images
The spectral sensitivities of the three camera sensors were obtained by taking
photographs of a white target (made of cyanoacrylate powder) illuminated by a
constant-current light source, through a set of narrow-band optical interference filters
spanning the range from 400 to 700 nm. The radiance of each filtered image was
measured with a Topcon SR-1 spectroradiometer. The set of radiance measures and
their associated camera digital values was then used to gamma-correct each image.
Finally, each image was converted from an R,G,B-sensor to L,M,S-cone representation
[with the Smith and Pokorny (1975) cone spectral sensitivity functions] by using a
conventional linear matrix transform [eg as described in Wandell (1995), Appendix 2].

Appendix 2: Details of Canny (1986) edge-detector algorithm
The various steps of the Canny algorithm are as follows:

Image smoothing. The image was first smoothed by a circularly symmetric Gaussian
kernel (of standard deviation s � 1 pixel for our case):

S�x, y� � G�x, y, s�*I�x, y� ,
where I (x, y) is the image, in this paper Rmap. G (x, y,s) is the Gaussian smoothing
filter, and S(x, y) the Gaussian-smoothed image.

Differentiation. The simplest discrete approximation to a derivative along the x and/or y
dimension is the difference between two adjacent pixels. The smoothing and differen-
tiation steps can be combined into a single operation by using a mask that is defined
as the first derivative of a Gaussian.

Non-maxima suppression. After the image has been convolved with the smoothing and
differentiation filter, edges can be located at points of local maxima, M(x, y), computed
as follows:

M�x, y� � �D 2
x �D 2

y �1=2 .
The resulting image M(x, y), however, is insufficient for identifying edges. A process
referred to as `non-maxima suppression' is employed to thin the ridges in M(x, y) by
suppressing all values along the line of the gradient perpendicular to the ridge that
are not peak values. Ridge-thinning instantiates the principle of `good continuation'
for edges and contours.

Edge thresholding.This is a common procedure for reducing the number of spurious edge
fragments. Here a threshold of near-zero was applied to obtain the final binary edge map.
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