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A MODEL FOR CONTRAST DISCRIMINATION WITH 
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A~~a~-~ittle [Vision Research, 26, 1677 (1986)j has shown that the metric of contrast W = AL/L_ 
(AL = difference in luminance between test patch and background, tml. = the smaller of the luminance 
of the background or test patch) is able to provide a unifying description of the pattern of contrast 
discrimination thresholds for pairs of test patches set against a common background. In particular the 
metric W unifies the pattern of discrimination thresholds for both increment and decrement pairs. We 
argue that while W provides a good mathematical description of Whittle’s data it is functionally 
implausible since it implies that the component of the stimulus which sets the adaptational level for 
increments is different from that which sets the adaptational level for decrements. We argue that the metric 
G = In(L/L,,) (L = test patch luminance. L, = background luminance) is physiologically more plausible 
than W and show that G can provide at least as good a fit as W to Whittle’s data when incorporated 
in a transfer function of the form RG = kG’ -“, with n set to 0.69. The fit to the data can be improved 
stilI further if a parameter representing the non-linearity in the gain-luminance function at tow luminances 
is included in the Rc equation. The theoretical implications for retinal gain mechanisms are discussed. 

Contrast di~rimin~tion thresholds Increments 

INTHODUCTION 

In an excellent series of expcrimcnts (summar- 
ised in Whittle, 1986) Whittlc and his co- 
workers described the ability of human 
observers to discriminate between pairs of lumi- 
nance increments ~Whittle & Swanston, 1974) 
and luminance decrements (Whittle 1986) over 
a wide range of physicaf contrasts (more than 6 
log units) and background luminances (3 log 
units). In this paper we aim to provide a model 
to account for Whittle’s (1986) data. 

We begin by describing the broad features of 
Whittle’s findings. A summary of the terminol- 
ogy employed by Whittle and ourselves is dia- 
grammatically illustrated in Fig. I. Full details 
of Whittle’s procedures are given in Whittle 
(1986). At very low values of AL (see Fig. I), 
between detection threshold and about 1.5-2.0 
fog units above threshold, di~rimination 
thresholds for both increments and decrements 
at first decrease slightly as the reference contrast 
increases (the “Pedestal Effect” of Leshowitz, 
Taub & Raab, 1968). Throughout this paper we 
shall be concerned only with the data gathered 
at levels above the pedestal effect range. 

For increments, discrimination thresholds in- 
crease linearly with increases in the reference 

Dccrcmcnts 

value of AL: the value of A(AL) is proportional 
to AL, as one would expect in accordance with 
a Weber’s Law for contrast discrimination, For 
decrements however, the function is different. 
As AL increases, A(AL) increases to a maximum 
value when AL is approximately half the value 
of Lb, the background luminance. Beyond this 
point however, A(AL) decreases with further 
increases in AL. 

These generafisations hold true regardless of 
the luminance of the background. When the 
data gathered at different background fumi- 
nances were normafised with respect to detec- 
tion threshold, all of the functions neatly 
superimposed. Figure 2, which is an ideafised 
version of Fig. 3 in Whittle (1986). summarises 
the results described above. Note that although 
the axes are logarithmic, this is solely in order 
to compress the range. The linear portion of the 
functions has a slope very close to unity, which 
means that it would afso be very nearly a 
straight-line function if plotted on linear axes. 

Whittle suggested the following metric of 
contrast W which finearised all of his data to a 
good approximation. 

W = AL/L, U) 
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Fig. I. Luminance profiles and terminology for stimuli used by Whittlc (1986): (a) dccrcmcnts; 

(b) incrcmcnts. 

where L,,,,” was the smaller of the luminanccs of 
the test patch or background. When A W was 
plotted against W Whittle found hc could en- 
compass most of his data by the second-order 
Weber’s Law. 

Figure 3, which is based on Fig. 9 of Whittle 
(1986). demonstrates this relation. Whittle 
found that a lint of unit slope fitted the data 
reasonably well. 

Given that the W formulation provides such 
a good fit to the data, it is important to ask AW/W=k. 
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Fig. 2. ldealised plots of the thresholds for contrast discrimi- 

nation, log A(AL), as a function of log AL, taken from Fig. 

3 of Whittle (1986). Dotted line = decrements; continuous 

line = increments. Each plot represents data collected at the 

three levels of background luminance, but normalised with 

respect to detection threshold. 
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Fig. 3. The same data as in Fig. 2 but plotted in terms of 

AWagainst B’. Note that although the axes are logarithmic, 

this is simply in order to compress the data. 
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whether the metric W has important impli- 
cations about the precise nature of the proper- 
ties of the mechanisms underlying contrast 
discrimination. Whittle (1986, p. 1686) puts the 
issue succinctly: me equation A W/ W = k] 
“ . . . suggests a model in which contrast is coded 
as W, but it may be no more than a convenient 
description . . .‘*. 

Despite the descriptive power of the metric 
W, there are grounds for questioning its plausi- 
bility as a basis for modelling. This is simply 
because while in the case of increments the 
denominator in the expression for W is the 
luminance of the background, in the case of 
decrements it is the luminance of the test parch. 
The denominator in this and in other Weber- 
like expressions can be thought of as a scaling 
factor which reflects the change in gain of the 
system as a function of stimulus intensity. Why 
should the gain be set by the background in the 
case of increments but by the target patch in the 
case of decrements? At the very least, and even 
at this level of description, this consideration 
robs the metric W of what at first sight seemed 
to be its great unifying power. In what follows 
we suggest an alternative formulation which 
avoids this shortcoming. 

THE MODEL 

Expressions for contrast of the general type 
AL/Lb (Lb = background luminance) imply that 
the response to an increment in luminance 
added to a steady-state adapting background is 
a linear function of the magnitude of the lumi- 
nance increment, with the slope of that function 
being inversely proportional to the background 
level. Microelectrode recordings of retinal neur- 
ones suggest however that this relationship is 
not what is observed. In general, the effects of 
increments and decrements on the peak transi- 
ent response of single neurones are well de- 
scribed by a compressive non-linearity (such as 
the Naka-Rushton equation for example), with 
a semi-saturation constant that is determined by 
the background level of illumination (Normann 
& Werblin, 1974) for mudpuppy cones; Nor- 
mann & Perlmann, 1979, for turtle cones; Sak- 
mann and Creuttfeld, 1969. for cat ganglion 
cells). When test spot luminance is plotted in 
logarithmic coordinates, the neurones’ response 
is proportional to the logarithm of luminance 
over the middle part of the range. This is 
particularly evident in the data provided by 
Sakmann and Creutzfeld (1969) for cat retinal 

ganglion ceils where the response is pro- 
portional to the logarithm of luminance over 
most of the range of AL. The data from Sak- 
mann and Creutzfeldt also show that the effect 
of the background adapting level is to shift the 
response curves to the right by an amount 
proportional to the logarithm of the back- 
ground luminance. Such evidence has led to the 
view that a logarithmic transformation of lumi- 
nance represents a reasonable description of the 
first transduction stage in vision (Comsweet, 
1970; Legge & Kersten, 1983). Probably with 
this assumption in mind the log transform is 
commonly employed to model the initial trans- 
duction stage in models of brightness and light- 
ness constancy (e.g. Land & McCann, 1971). 

Although caution is necessary in extrapolat- 
ing from single cell recordings to the behaviour 
of the visual system as a whole, the above 
considerations suggest a possible alternative de- 
scription of contrast to that of the AL/L,,. 
formulation. We call it G where: 

G = In(L/L,). (3) 

Contrast discrimination thresholds AG are thus 
given by: 

AC =klGI”; (4) 

with n being the single free parameter whose 
value is yet to be determined. In what follows we 
explore the extent to which this alternative 
formulation may account for Whittle’s data. 

In general, the response R of an operator to 
a contrast C can be obtained by a method first 
proposed by Fechner for establishing the nature 
of the transducer function of the visual system 
to luminance (Boring, 1950). Following Fech- 
ner. we suppose that a certain fixed amount of 
change in internal sensation, AR, is required for 
a discrimination threshold AC. If one has found 
empirically that AC/C” is constant, then it is 
possible to write the general formulation: 

AC 
AR = k+. 

Since AR and AC are small they can be respect- 
ively approximated by the limiting values dR 
and dC, and R can thus be obtained by inte- 
gration: 

which gives 

R =k’ G + R’ (n # 1); 

R=k’InC+R’ (n = 1); 

(7a) 

(7b) 
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k’ is a proportionality constant and R’ the Thus, if we constrain L, to be 0.5 L,. n is 
constant of integration (R’ is the response when calculated to be 0.69. With the exponent set to 
C = i for equation 7a and C = 0 for 7b). Ex- that value Figs 4a and 5a plot R, as a function 
pressions of this type have been employed by a of AL for decrements and increments respect- 
number of previous investigators to model the ively. Also shown is the plot of R, as a function 
contrast response of the visual system (e.g. of AL, and as can be seen. both transfer func- 
Wilson, 1980). tions are very similar in shape. 

It is thus possible to define the transducer 
functions of the models of contrast coding 
which employ the metrics Wand G respectively. 
It is then possible to proceed to adjust any free 
parameters, such as the value of the exponent n 
in the latter, to make the transfer function based 
on G as close as possible to that based on W. 
Moreover, expressions can be derived which 
describe a number of useful properties of the 
models, such as the predicted functions relating 
A(AL) to AL for both increments and decre- 
ments. 

in Appendix A we show how contrast dis- 
c~mination thresholds for the R, transducer 
function are given respectively for increments 
and decrements by: 

A(AL)v = k L(Lb - L); (94 

A(AL), = k (L - Lb); 19b) 

and for the RG transducer function for both 
increments and decrements by: 

The transducer functions based on Wand G, 
R, and RG respectively, are defined as: 

R, = In W; R, = K, (8a. b) 

A(AL), = k L lln(L/Lb)l”. (IO) 

Figures 4b and 5b show the functions A(AL)G 
and A(AL), for decrements (4b) and increments 
(Sb) respectively, and as expected the functions 
based on R, and R, are very similar. 

The In W function for R, (equation 84 follows 
from Whittlc’s (1986) description of his data in 
which the A W/ W function was fitted by a 
straight line of approximately unit slope (i.c. an 
cxponcnt of one). The parameter R’ in equation 
(7a. b) disappears when the expressions are 
differentiated (see below) and can therefore be 
arbitrarily set to zero in equation @a, b); k’ is 
an arbitrary scaling factor which we set for 
simplicity to unity in equation (Sa, b). 

How might we choose that value of the 
exponent n in the transfer function RG of our 
model operator which best fits Whittle’s data? 
Refer back to Fig. 2 and the inverse U-shaped 
curve which describes the function relating 
A(AL) to AL for decrements. We previously 
noted that the luminance of the test patch where 
contrast discriminability was at its worst (the 
peak in this function) occurred where L equalled 
approx. 50% of Lb,, and we refer to the value of 
L at this point as L, (m = minimum discrim- 
inability). in Appendix A 1 we show on theoreti- 
cal grounds that the relation L, = L,/2 is 
exactly what would be expected on the basis of 
the transducer function R, = In W. We there- 
fore decided to employ this constraint to set the 
value of n in the RG equation, and as we show 
later, the appropriateness of the value of n 
chosen in this way is confirmed by other means. 

It is now possible to examine more closely the 
extent to which our model fits Whittle’s data. 
For this stage of the argument it is necessary to 
bc quite clear about the distinction between W 
UJ u dcscripiion of the conlrusI o/’ intlic+duul 

srirnuli, and the expressions R, = in W or 
A W/ W = k which refer to the propcrtics (re- 
spectively the transducer function and the dis- 
crimination function) of a ~h~~re~icu~ nzu~e~ of 
contrast coding in the visuul system. Whilst we 
are arguing against the expression as a basis for 
model, the ratio W (like any expression that 
describes the relationship between the lumi- 
nances of the test patch and its background) is 
a perfectly acceptable metric for stimulus con- 
trast. 

Thus we can take some value of W for a given 
background luminance: the luminance of the 
test patch is then determinate [since 
w=(L_x- L,,)/L,,,,,]. From that pair of lumi- 
nances we can calculate, from a model, what the 
expected threshold contrast difference will be 
between this original stimulus and another on 
the same background. The contrast of this 
second stimulus can then be expressed in terms 
of W, and the difference A W can be computed. 
It is thus possible to plot the predicted value of 
A W against W according to any model of one’s 
choosing. 

In Appendix A2 we show that for our model 
operator, L, is given by Lb/e”, where e = 2.718. 

Refer now to Fig. 3, which describes the plot 
of the empirical values of A W against W. This 
is the plot which is fitted by the straight line 
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Fig. 4. Theoretical functions for models of contrast coding of decrements based on the metrics W and 
G. Continuous lines = functions based on W; dashed lines = functions based on G with an exponent 
n = 0.69 (see text for details). (a) Transducer function, (b) A(At) functions. The abscissae are plotted in 
linear units of AL as a percentage of fS+&. The ordinate is aIso in linear units. In (a) the intercepts and 
scaling constants of each curve have been arbitrarily chosen to bring the functions into close eorrespon- 
dence in order that their shapes may be readily compared. In (b) the plots have been scaled to bring the 

ordinate values at AI. = 50% into ahgnment. 

function A W/ W = k to a first approximation, 
and which thcrcfore suggests the possibility of a 
model of contrast coding whose transfer func- 
tion is given by R,. How closely are the empir- 
ical values of A W matched by those predicted by 
our model whose transfer function is R,? To 
answer this question WC have replotted a repre- 
sentative set of data points taken from Fig. 9 of 
Whittle (1986). The points were from subject 
PW and were the data set obtained with a 
background luminance of 2.35 log td for the 
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decrements and 3.35 log td for the increments 
(there were insufficient data points in the incre- 
mcnt data at the background luminance of 2.35 
td). The decrement values are shown in Fig. 6a, 
the increment values in Fig. 6b. 

First refer to the continuous lines in Fig. 6a 
and b. These represent the straight line fits of 
A W/ W = k. with k set to 0.12, the value Whittle 
found to give the best fit to the data as a whole. 
Notice that for the decrements (Fig. 6a), the 
data points diverge upwards away from the 
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Fig. 5. Theoretical functions as in Fig. 4 for increments. 
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Fig. 6. Predicted functions of AI’ as a function of W 

according to two models. The data points rcprescm actual 

empirical values taken from Fig. 9 of Whittle (1986). (a) 

Dccrrmcms: solid squares are data points from subject PW 

at a background of 2.35 log td. (b) Increments: open circles 

are data points from PW at a background of 3.35 log td. 

Continuous lines represent the function A W/ W = 0.12. 

Dashed lines arc the AU’, function derived from the Trans- 

ducer function R, (see text for details) with an exponenl of 

n = 0.69 and scaling constant k = 0.06. Dotted lines rep- 

resent the AU’, function in the modified version of R, which 

includes the parameter 15, set IO 2.0 td (see text for details). 

continuous line at large values of AL. 
divergence is found for all the decrement 
that Whittle collected (see his Fig. 9) 
represents a modest though important 

This 
data 

limi- 
tation on the predictive power of the R, = In W 

model. 
We define the value of A W that is predicted 

by our model as A W,, and in Appendix C we 
show that: 

Lb AtALL 
AwG= L[L -A(AL),]’ (I la) 

AW&!@.k; 
Lb 

(1 lb) 

for decrements and increments respectively, 
with A(AL), as previously defined in equation 
(9). These functions are plotted as the dashed 
lines in Fig. 6a and b respectively, with the 
constant of proportionality k in equation (9) set 
to 0.6 (the value that gave the best fit in the final 
stage of modelling described below). 

For the increment data the fit of the R, model 
(dashed line) is at least as good as the predic- 
tions based upon R, (continuous line); more- 
over the Rc predictions for the decrement data 
(dashed line), being slightly bow-shaped. fit those 
data even more closely that those from R, 

(continuous line). In particular, this initial ver- 
sion of RG already begins to reflect the upward 
divergence of the values of A W at high contrasts. 

These high contrast values of AH’ in the 
decrement data in Fig. 6a still appear to be even 
higher than the simple version of our model 
predicts and we now consider why this might be 
so. Inspection of Whittle’s (1986) Fig. 9 reveals 
two features. First, there is a considerably 
greater degree of dispersion in these high con- 
trast data points than elsewhere on the function, 
and second, this dispersion is orderly. In 
each case the data gathered at lower back- 
ground luminances give higher discrimination 
thresholds. 

It is known that although over much of its 
range the response of the visual system is a 
linear function of the logarithm of luminance 
(Weber’s Law), at low luminances the response 
function flattens out (Whittle & Challands, 
1969). In equation (I), which contains a descrip- 
tion of the initial non-linear transformation of 
luminance by our model operator, the input 
luminance is simply log transformed: we have 
assumed up to this point that Weber’s Law 
holds across the whole range of luminance. The 
departure from Weber’s law at low luminance is 
partly a consequence of noise in the neural 
transduction process but principally a conse- 
quence of the particular way in which the gain, 
or adaptational level, of the retina changes with 
the luminance level (Shapley & Enroth-Cugell, 
1984). Gain is defined as the rule of growth of 
response to luminance and Shapley and Enroth- 
Cugell (1984) have suggested that a description 
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of the gain for retinal ganglion cells may be 
given by: 

Gain=%= ,+:,L; (12) 
h 

where K is the gain for the completely dark 
adapted state and L,, the luminance at which 
that gain is halved. We employ equation (12) as 
an engineering approximation to the change 
of gain with luminance that occurs in the 
retina as a whole, as we have done previously 
(Kingdom & Moulden, 1989). The consequence 
of equation (12) for the transducer function 
which describes the growth of response of the 
visual system to luminance is obtained by inte- 
gration of equation (12) which gives: 

R = KL/, hl(i + L/L,,) + c. (13) 

If one substitutes equation (13) for both In L 
and In Lh (with Lb = L in the latter) in equation 
@a). then after simplification the transducer 
function of the model is modified to the 
form: 

&;=~~In{~]l’-“. (14) 

Equation (14) may be simplified even further by 
setting the (arbitrary) constant of proportional- 
ity KL, cqual to unity. There arc now two free 
paramrtrrs. n and Lh. We found by iterative 
starch that the combination of n and L,, which 
best fitted the data points in Fig. 6a was 
n = 0.69 and L,, = 2.0 td. The value of n = 0.69 
arrived at in this way was identical to that 
arrived at by the alternative method described 
earlier. 

The resulting predictions for AW, (see 
Appendix B for mathematical details) are shown 
as the dotted lines in Fig. 6. For the increment 
data (Fig. 6b). the addition of the constant Lh 
makes no difference to the predictions, as would 
be expected. 

On the other hand for the decrement data 
(Fig. 6a). the addition of L, produces an up- 
wards shift in the function at high contrasts, and 
the resulting fit to the data is now excellent. 
Moreover, the modified version of R, correctly 
predicts the other feature of Whittle’s data that 
we noted above, namely that at high decrement 
contrasts there is an ordered increase in the 
values of A W with lower and lower background 
luminance. This occurs, according to our model, 
because the proportional contribution that Lh 
makes to the R, function increases as Lb and L 
decreases, producing a greater and greater 

upward shift in the A W, function at high con- 
trast. 

SUMMARY ASD CONCLUSION 

We have shown how a model based upon the 
logarithmic transform of stimulus luminance 
can provide a very good fit to the data of 
Whittle (1986). In its simplest version, the model 
has one free parameter, the exponent in the 
power function that describes contrast discrimi- 
nation thresholds. When this free parameter was 
suitably adjusted the fit to Whittle’s data was as 
good as with the metric W (also fitted with one 
free parameter). With the inclusion of a second 
free parameter, which took into account a non- 
linearity in the gain-luminance relationship at 
low luminance levels, the fit was even better. 
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APPENDIX A 

Theoretical Properties of the R, Transfer 
Function 

The sensitivity of a model operator to small changes in the 
luminance L of the test patch (i.e. to small changes in 
contrast) is approximated by the first derivative with respect 
to L of the transfer function of the operator. The A(AL) 
function is then approximated by the reciprocal of this first 
derivative. scaled by a constant k which is determined 
empirically. 

TIC sensitivity to small changes in L for decrements is 
given by: 

dR,_dInL,-L 

dL dLt; 
-L, 

-L(L,; 
(Al) 

and thus the (absolute) values of A(AL), arc given by 

kL(L,- L) 
A(AL),= L 

b 

Equation (AZ) is an invcrsc U shaped function when 
A(AL), is plotted against L for a given value of L,. To 
obtain that value of L whcrc the function peaks. L,. WC set 
rhc dcrivalive with rcspcct 10 L 10 zero and solve for L. 
Thus: 

k(L,-2L) 
$ A(AL), = 7-i 

b 
(A3) 

xtting equation (A3) equal to zero, substiluling L, for L 
and solving for L, gives: 

L, = LJZ. (A4) 

Equation (A4) implies that the peak value of A(AL) will 
always occur when L (or AL) is 50% of the value of L,. 

For increments the scnsitiviry 10 small changes in L is 
approximated by: 

(AS) 

Thus, rhe A(AL),. function for increments is given by: 

A(AL), = k(L -Lb). (A6) 

APPENDIX B 

Theoretical Properties of the RG Transfer 
Function 

From the argument given in Appendix A. the sensitivity lo 
small changes in L for Ihe R, transfer function is approxi- 
mated by: 

d&i 
- =&A In(L!L,) 

I I 

I-” 

dL 
= jln(L/L,)l+i. (Bl) 

And thus the A(AL), function for both decrements and 
increments is given by: 

A(AL), = kL Iln(L/L,)I”. (W 

To obtain the peak value of A(AL), we follow the method 
described in Appendix A: 

$(AL),=k-&Liln(LiL,)I” 

= kLnlln(L/L,)I”-’ l/L +klln(L/L,)I”. 

Setting this result equal to zero. simplifying and setting L, 
equal to L gives: 

L, = L,/e”. (B3) 

The A(AL), function for the modified version of the R, 

transfer function containing the parameter L, is obtained in 
the same way as described above. 

Taking the reciprocal and incorporationg the constant k 
gives: 

A(AL), = k(L + L,,)1ln{sjl”. (84) 

APPENDIX C 

Estimation of A W, 

To ohlain the predicted values of AU’ from the R, Iransfcr 
function we d&e AW in hzrms of A(AL), and simply 
substitute AW, for AW and A(AL), (equation B2) for 
A(AL). 

For dccrcmcnrs 

,,=LrlL-A( G-L) 
L -A(AL) --’ L 

Substituting AW, for AN’ and A(AL), for A(AL) gives, 
after simplification: 

L, AlAL) 
AwG = A(AL)[L - A(AL)] 

For increments: 

Aw = [L + A(AL)I- L, L - L,, 
Lb L ’ 

and by substitution as with decrements: 

A,=?. 
) 

(Cl) 

(C2) 


