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Lower order image statistics, which can be described by
an image’s Fourier energy content, enable segmentation
when they are different on either side of a boundary. We
have previously demonstrated that the spatial
distribution of the energy in an image (described by its
higher order statistics or structure) could influence
segmentation thresholds for contrast- and orientation-
defined boundaries, even though it was the same on
either side of the boundary and thus task irrelevant
(Zavitz & Baker, 2013). Here we examined whether
higher order statistics can also enable segmentation
when boundaries are defined by differences in structure
or density of texture elements. We used micropattern-
based naturalistic synthetic textures to manipulate the
sparseness, global phase alignment, and local phase
alignment of carrier textures and measured
segmentation thresholds based on forced-choice
judgments of boundary orientation. We found that both
global phase structure and sparseness, but not local
phase alignment, enable segmentation and that local
structure also has a small effect on segmentation
thresholds in both cases. Simulations of a two-stage
filter model with a compressive intermediate
nonlinearity can reproduce the major features of the
experimental data, segmenting boundaries defined by
higher order statistics alone while capturing the
influence of global image structure on segmentation
thresholds.

Introduction

Boundary segmentation, one of the visual system’s
most fundamental tasks, is based upon detection of a
discontinuity in one or more image properties such as

luminance, orientation, or contrast. The lower order
image statistics of textures, described by their Fourier
amplitude spectrum, are well known to support
segmentation when they differ across a boundary. We
previously demonstrated that boundaries defined by
differences in contrast or orientation of texture
elements were easier to segment when the constituent
textures were phase scrambled (Zavitz & Baker,
2013). Thus changes in the spatial distribution of the
energy in a texture image (its higher order structure)
can affect segmentation thresholds, even though these
changes were the same on either side of the boundary
and therefore irrelevant to the task. We also found
differences in effects of different types of higher order
statistics: Sparseness and global phase structure
appeared to influence segmentation, but local phase
structure did not. It remains to be seen to what extent
higher order texture statistics, either global or local,
might also enable segmentation when they vary on
either side of the boundary. This issue is significant
because naturally occurring textures are often
broadband and rich in local structural features. Here
we test the ability of textural structure to enable
segmentation as a function of density of texture
elements, as well as the ability of element density itself
to enable segmentation for different kinds of local
structure.

It is clear that scene and object perception rely on the
visual system encoding the spatial distribution of
energy, or structure, of an image, described by its
Fourier phase spectrum (Hansen & Hess, 2007). Image
statistics may be summarized in terms of the correla-
tional relationships (moments) of image pixels. In this
view, lower order image statistics are the mean and
autocorrelation function (i.e., correlation between a
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given pixel intensity and one of its neighbors), or
equivalently, Fourier amplitude spectrum: luminance
and contrast energy at each orientation and spatial
frequency component. Higher order statistics are
described by higher order autocorrelation functions,
i.e., how much a given pixel intensity is correlated with
two or more neighboring pixels. The higher order
statistics differ fundamentally from the lower order in
that they are embodied in phase components of the
Fourier transform of an image (Thomson & Foster,
1997). Thus higher order statistics capture image
structure, or how the image energy is distributed across
space. Structural information in a sufficiently broad-
band image may be removed by randomizing the phase
spectrum (Oppenheim & Lim, 1981; Piotrowski &
Campbell, 1982). For example, sparseness is a higher
order image statistic because it describes how energy in
an image is either clustered into locally high- and low-
contrast regions (more sparse) or distributed so that
contrast across the image is closer to the average (less
sparse).

Here we will distinguish global from local structure.
In this context, global structure refers to the higher
order statistics that are derived across the entire image
(such as sparseness), while local structure refers to
characteristics of smaller regions of the image that are
assessed independently of the average (such as local
phase alignment). Textures composed of micropatterns
are ideal for highlighting this distinction, because the
micropatterns carry local structure, but their arrange-
ment results in the global structure. This resembles the
approach taken by Julesz (1981b) to show that not only
the overall properties of an entire texture image but
also those of the ‘‘textons’’ it contained could
contribute to texture segmentation.

The set of texture statistics that can enable segmen-
tation has previously been a subject of much research.
Differences in dipole statistics (Julesz, 1962) were once
considered the primary texture property that enabled
segmentation, but later studies indicated that local
differences, such as closure and corners that were not
reflected in the dipole statistics, could also suffice
(Julesz, 1981a, 1981b; Olson & Attneave, 1970). Bergen
and Adelson (1988) demonstrated that differences in
textures’ overall Fourier energy enable segmentation
and that the effects of many of the local texture
properties posited in the aforementioned studies could
be accounted for within this framework. However
Malik and Perona (1990) and Motoyoshi and Kingdom
(2007) showed that local contrast polarity can also
enable segmentation even though the Fourier energy
was uniform. This raises the question of whether other
local properties not captured by the Fourier spectrum
may also enable segmentation.

Arguably we should use natural texture photographs
to begin this investigation to ensure inclusion of any

potentially important higher order statistics (Arsenault,
Yoonessi, & Baker, 2011). However in pilot tests using
boundaries between pairs of natural textures, we
observed examples of both improvements and impair-
ments to segmentation thresholds after removing
structure by randomizing the phase spectrum, depend-
ing on which individual textures were employed.
Consequently such results were difficult to interpret
because psychophysical performance depended not
only on the individual textures but also on the
interactions between them. Additionally, natural tex-
tures differ on many dimensions (e.g., orientation
bandwidth, dominant orientation, structure), further
complicating experimental interpretations. Instead,
here we employ naturalistic synthetic textures that can
capture important higher order statistics that affect
segmentation performance (Zavitz & Baker, 2013).

Most existing models of human texture segmen-
tation use a filter-rectify-filter (FRF ) architecture: a
bank of oriented filters at a range of high spatial
frequencies followed by a pointwise nonlinearity
and then summation following a second stage of
linear low spatial frequency filtering (Figure 1). In
this scheme, the first stage filters serve to charac-
terize the fine-scale Fourier energy in the texture,
the point-wise nonlinearity prevents cancellation
between peaks and valleys of signals from the early
filters, and the second filtering stage detects the
coarse-scale boundary. These models have been
shown to account for a wide range of texture
segmentation phenomena (Landy & Graham, 2004).
Such models are usually envisaged as segmenting
regions of relatively homogeneous textures, as is
the case in this study. However, because of the
small scale of the first-stage filters relative to the
scale of the boundary, a model with a sufficiently
broadband or high spatial frequency second-stage
filter can also segment boundaries defined only by
differences in local contrast across a boundary even
if the regions of texture themselves have the same
average energy content (e.g., Nothdurft, 1991).

Here we will also investigate to what extent this
model might account for human psychophysical
performance on segmentation of structure boundar-
ies—i.e., boundaries defined by differences in the
spatial structure of the energy in adjacent textures
rather than their amplitude spectra. As conventionally
proposed (e.g., Adelson & Bergen, 1985; Malik &
Perona, 1990), the FRF model has a square-law
pointwise nonlinearity. Consequently when the re-
sponses of an early band-pass filter are averaged over
space (as they are by the second-stage filter) the model
measures differences in the energy present in the texture
within that band. This measurement reflects differences
in the Fourier amplitude spectrum (lower order
statistics) but not those in the phase spectrum (higher
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order statistics). Recently we have demonstrated
(Zavitz & Baker, 2013) that if the intermediate
nonlinearity has a compressive shape, this type of
model can also account for the influence of higher
order statistics on contrast- and orientation-defined
segmentation.

Here we will evaluate this model with boundaries
defined by higher order texture statistics to assess its
ability to capture the extent to which structure and
sparseness can both influence and enable segmentation
of boundaries defined by differences in texture struc-
ture. We will examine the effect of structure in general
by completely randomizing textures’ phase spectra, but
we will also look at specific types of structure. We
examine the effects of sparseness, a perceptually
important global higher order statistic that reflects the
distribution of energy in a texture, by manipulating the
number of micropatterns placed in a fixed area, i.e., the
texture density. Sparse textures are characterized by
larger amounts of contrast energy concentrated in
fewer locations, whereas dense textures have energy
distributed more uniformly across image locations. We
will also look at the effects of local phase-aligned edges
by comparing performance for textures whose micro-
patterns consist of phase-aligned edges and those
whose edges have the same bandwidth but whose
phases are not aligned.

General methods

Stimuli

To create the stimuli for these experiments, we used
pairs of texture patterns with identical Fourier ampli-
tude spectra but with some higher order statistical
difference between them, such as structure or density of
texture elements, quilted together and windowed by a

circular aperture to form a disc composed of two
textured halves with a left- or right-oblique boundary
between them. The details of this procedure are
described in Zavitz and Baker (2013).

Textures

Synthetic micropattern textures were designed to
capture attributes of natural textures such as a 1/f
amplitude spectrum, sparseness, and local edge struc-
ture, while allowing us to parametrically control these
and other image statistics. To create such a texture, a
number of micropatterns in a range of sizes and
orientations were randomly positioned on an oversize
image without constraints on overlap. With this basic
formulation we created three different types of texture
that differ in structure.

Intact (INT) textures used broadband ‘‘edgelet’’
micropatterns consisting of phase-aligned sine waves
producing a step edge, windowed by a Gaussian
function (Figure 2A, top). Locally scrambled (LS)
textures were very similar, but the sine-wave compo-
nents were phase randomized before windowing to
eliminate local edge structure (Figure 2A, bottom). To
create the globally scrambled (GS) condition, the
phase spectrum of an INT texture was replaced with
the phase spectrum of white noise, removing all phase
structure from the texture (Dakin, Hess, Ledgeway, &
Achtman, 2002). In the INT and LS conditions,
density was varied by changing the total number (595,
1,530, or 2,975) of micropatterns used to create the
texture.

Textures were generated on a trial-by-trial basis and
subjected to the same homogeneity constraints as
described previously (Arsenault, Yoonessi, & Baker,
2011) to preclude spurious luminance or contrast
boundaries caused by unevenly distributed micropat-
tern placements. In the low-density condition, only
about 12% of the generated textures passed this test; in

Figure 1. Schematic of a filter-rectify-filter style model. First-stage filters (at left) are applied in a range of orientations, spatial

frequencies, and phases to characterize fine texture detail. The outputs of these filters are then subjected to a rectifying nonlinearity.

A coarser scale second-stage filter reveals the modulation over the texture (e.g., in orientation or contrast). The shape of the

nonlinearity can be parameterized using a power law k, and the amount of decision noise can be parameterized by the standard

deviation of an additive noise distribution a.

Journal of Vision (2014) 14(4):14, 1–14 Zavitz & Baker, Jr. 3



the medium density condition, about 47% of textures

passed; and in the high-density condition, about 76% of

textures passed. Each texture was scaled to have a mean

value of zero, and its extreme luminance values were

clipped at 63 standard deviations and scaled to fit in

the range of intensities between 61.0. Textures were

scaled to equalize root-mean-square (RMS) contrast

prior to the boundary creation procedure.

Boundary creation

Boundaries were created between textures using a
quilting method (Landy & Oruç, 2002; Watson & Eckert,
1994) illustrated in Figure 2B. After two carrier textures
(CA and CB) were created, two complementary envelope
patterns were generated to modulate the contrast of each

of them in a half-disc pattern. A half-disc envelope
function with a cosine taper at the boundary (Ex,y) is

Figure 2. Construction of micropattern texture boundary stimuli. (A) Micropatterns used in texture creation. Top: Intact micropattern,

bottom: one instance of a locally phase-scrambled micropattern. (B) Quilting method for creation of texture boundaries. Carrier

textures are windowed and modulated separately, then these modulated halves are then combined, in this case, to produce a

density-modulated boundary. The modulation depth of the stimulus shown is 100%. (C) Effect of modulation depth (m) on task

difficulty. This figure depicts an INT-GS texture at 100%, 75%, and 35% modulation depths.
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scaled to create modulators (EA and EB):

EA ¼ Wx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmEx;yÞ=2

q
ð1Þ

EB ¼ Wx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�mEx;yÞ=2

q
: ð2Þ

The window (Wx,y) is a cosine-tapered circular
aperture. The products of the window and each of the
envelopes is a tapered disc bisected by an oblique
boundary. The modulation depth parameter (m)
determines the relative strength of a texture between
the two halves (Figure 2C). With a modulation depth of
100% (m ¼ 1), each texture is entirely confined to one
half, but as the modulation depth is decreased, both
textures are increasingly present in both halves, but
with the two carrier textures weighted reciprocally in
each half. When the modulation depth is 0%, the
stimulus is a homogeneous blend of both textures (i.e.,
there is no boundary).

The carrier patterns are scaled to the specified carrier
contrast with scaling factor c. The means of the carriers
are adjusted so that the final stimulus will be
luminance-balanced after the envelopes (Equations 1 &
2) have been applied.

C0A ¼ cCA �

Z Z
cCAEA � 0:5
Z Z

EA

ð3Þ

C0B ¼ cCB �

Z Z
cCBEB � 0:5
Z Z

EB

: ð4Þ

The final stimulus (Sx,y) is the sum of the two carrier
components, each spatially weighted by their respective
envelopes, where Lo is the mean luminance:

Sx;y ¼ Lo 1þ C0AEA þ C0BEB

� �
: ð5Þ

Apparatus and observers

The stimuli were presented on a CRT monitor (Sony
Trinitron Multiscan G400, 81 cd/m2, 75 Hz, 1024 · 768
pixels), gamma linearized with a digital video processor
(Bitsþþ, Cambridge Research Systems) for greater bit
depth at low contrasts. Stimulus patterns appeared in a
central 480 · 480 pixel patch on a mean gray
background. Observers viewed the stimuli from a
distance of 114 cm, resulting in a stimulus visual angle
of approximately 6.58. The experiment was run on a
Macintosh (Desktop Pro, MacOSX) using Matlab and
PsychToolbox (Brainard, 1997; Kleiner, Brainard, &

Pelli, 2007; Pelli, 1997). The experiment was performed
under the approval of the McGill University Ethics
Committee and conformed to the Helsinki Declaration
for experiments with human subjects.

Task

Before beginning a block of trials, observers were
informed as to what texture property would define the
boundary. Within a block of trials, boundary and
structure type were kept constant. At the beginning of a
trial, observers fixated a mark at the center of the screen
and initiated the trial with a button press. The stimulus
was displayed for 100 ms, and the observer indicated
with another button press whether the boundary
between the textures was left or right oblique. The RMS
contrast of the stimulus was 14%, which was well above
threshold for all observers. Between stimulus presenta-
tions the screen was maintained at the gray level of the
mean luminance. No feedback was provided, but all
observers were given an opportunity to practice until
they were comfortable with the stimuli and task.

We tested observers on five modulation depth levels,
logarithmically spaced between 100% and 25%, with
additional levels below 25% if necessary to reach
chance performance. Observers were tested in blocks of
100 trials, with 20 trials per level. At least three of these
blocks were run, staggered between different condi-
tions, for a total of at least 300 trials per condition.

Data analysis

Percent-correct data were fit with a logistic psycho-
metric function, and a threshold was interpolated at the
75% correct point. Prism (GraphPad Software, Inc.)
was used for curve fitting and standard-error boot-
strapping.

To test for significance we used two-way analyses of
variance (ANOVAs) or paired-samples t tests with a
criterion of a ¼ 0.05. Effect size (Klein, 2005) was
measured using Cohen’s d with the standardizer
computed as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

p
2

; ð6Þ

where r1 and r2 are the sample standard deviations of
the compared conditions.

Experiment 1: Structure boundary
segmentation

We have recently demonstrated that contrast and
orientation boundary segmentation is influenced by the
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presence of higher order image statistics (Zavitz &
Baker, 2013). Here, we test whether differences in
higher order statistics alone can enable segmentation
and also examine the influence of sparseness and local
phase structure on segmentation thresholds.

Methods

In this experiment we measured modulation depth
thresholds for observers segmenting boundaries defined
by differences in phase structure. We tested all pairwise
combinations of three phase structure conditions
(Figure 3): intact (INT) carriers using edgelet micro-
patterns consisting of a phase-aligned broadband edge
in a Gaussian window; globally scrambled (GS) texture
carriers generated by phase-scrambling intact textures;
and locally scrambled (LS) textures using the same
broadband micropatterns but with a phase-scrambled
edge (Figure 2A). Density was varied parametrically for
the INT and LS textures by changing the number of
micropatterns being randomly placed on the texture
canvas (595, 1,530, or 2,975). Pairs of such textures
were quilted as described in the General methods and

illustrated in Figure 2B to create a unique stimulus for
each trial. We created boundaries testing all combina-
tions of the phase-alignment conditions for three
structure boundary conditions: INT-LS, INT-GS, and
LS-GS (rows of Figure 3), and tested each at three
density levels (columns of Figure 3). All observers had
normal or corrected-to-normal vision, and JH, JB, and
AR were naı̈ve to the purpose of the experiment.

Results

Structure boundary segmentation results are shown
in Figure 4. While this was a challenging task,
observers experienced no difficulty segmenting the
boundaries at the greatest modulation depths, with the
exception of the INT-LS condition for two of the
observers (upper right and lower left panels of Figure 4,
open circles).

Thresholds for boundaries between textures with and
without global structure (INT-GS and LS-GS, open
triangles and filled circles in Figure 4) were consider-
ably better. In both conditions the thresholds increased
with density. Thresholds in these conditions were

Figure 3. Examples of structure modulated stimuli used for Experiment 1, shown with left-oblique boundaries at a modulation

depth of 100%. The boundary types are organized into rows, while the density conditions are organized into columns. INT-GS

boundaries are a combination of intact and globally scrambled textures, LS-GS boundaries result from the combination of

locally scrambled and globally scrambled textures, and INT-LS boundaries are created by pairing intact and locally scrambled

textures.
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almost identical at the lowest density, but the
thresholds for LS-GS boundaries increased more
quickly with density than those in the INT-GS
condition. A two-way ANOVA was run on only the
LS-GS and INT-GS conditions, because thresholds
could not be reliably estimated for all observers and
conditions in the INT-LS condition. This confirmed a
main effect of structure, F(1, 9)¼ 41.01, p , 0.05, and a
main effect of density, F(2, 9)¼ 6.67, p , 0.05, as well
as a significant interaction between structure and

density, F(2, 9)¼ 26.87, p , 0.05. Post-hoc Bonferroni
tests (Table 1) demonstrated that the significant
difference between the INT-GS and LS-GS conditions
was at the highest density only (t¼ 9.52, p , 0.05, d¼
1.24).

These results demonstrate that differences in higher
order statistics, particularly in global phase structure,
can enable segmentation. Globally scrambled (GS)
textures have particularly low sparseness compared to
the locally scrambled (LS) and intact (INT) textures
with which they have been paired. From inspection it
seems likely that an important factor enabling seg-
mentation in these stimuli is a difference in sparseness
on either side of the boundary. These results also
suggest that for highly sparse textures (i.e., INT and LS
at low density), differences in local phase structure do
not influence segmentation, as we did not find a
difference between thresholds in the INT-GS and LS-
GS conditions. At high densities the presence of local
structure can facilitate segmentation, as evidenced by
lower thresholds for the INT-GS condition relative to

Figure 4. Structure boundary segmentation results for individual observers. Error bars indicate standard error. The boundary

conditions are: INT-GS, between an intact texture and a phase-scrambled texture (filled circles); LS-GS, between a locally scrambled

and globally scrambled texture (open triangles); and INT-LS, between an intact texture and a locally scrambled texture (open circles).

The gray symbols for observers AR and JH indicate above-chance performance only at a modulation depth of 100%, so no threshold

could be estimated. These results show elevated thresholds for the INT-LS condition that display little or no dependence on density. In

this condition, human performance was slightly above chance and good enough to fit thresholds in some cases (LA and JB).

Segmentation performance on the INT-GS and LS-GS conditions is relatively impaired with increasing density, with very similar

thresholds at low densities, but LS-GS exhibiting more difficulty at high densities. Blue symbols and lines indicate predictions of a two-

stage model.

Density t p d

INT-GS to LS-GS

595 0.429 . 0.05 0.30

1,530 2.005 . 0.05 0.69

2,975* 9.516 , 0.05 2.46

Table 1. Results from Bonferroni post-hoc tests (t, p) and effect
sizes (d) for the data presented in Experiment 1. Statistically
significant differences (p , 0.05) are indicated with an asterisk.
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the LS-GS condition. However, differences in local
phase structure alone (i.e., INT-LS) appear to provide
poor support for segmentation. It is possible that
locally scrambled micropatterns may not have the same
sparseness as the intact micropatterns, because their
energy is distributed evenly over their area instead of
being concentrated at a single edge. These relatively
subtle variations in sparseness may have impacted our
results, and we further consider this idea in the
Discussion.

Experiment 2: Density boundary
segmentation

In Experiment 1 the task was more difficult at higher
densities for boundaries between the intact or locally
scrambled textures and the globally scrambled textures,
suggesting that the difference in sparseness across the
boundary might have been an important segmentation
cue.

While density has been shown to be a salient cue for
segmentation (e.g., Wilkinson & Lessard, 1995),
previous demonstrations of this effect have been
confounded by concomitant luminance gradients. Here
we test directly whether observers can segment
boundaries defined solely by a difference in density of
micropatterns, i.e., with luminance and RMS contrast
equated across the boundary. The experiment also
examines the influence of local structure on density
segmentation.

Methods

We created density boundaries for two types of
textures, intact (INT) and locally scrambled (LS). For
each type, density boundaries were formed by quilting a
low-density texture (595 micropatterns) with a high
density texture (2,975 micropatterns) of the same type,
as shown in the left and middle stimuli of Figure 5.
Globally scrambled textures have a maximal sparseness
regardless of the original micropattern density, so that
no boundary is formed (Figure 5, right-most stimulus),
and hence this condition was not considered further.
The same four observers were tested as in Experiment 1.

Results

Density boundary segmentation results are shown in
Figure 6. All four observers were able to segment these
boundaries, with well-defined thresholds for all ob-
servers and conditions. We found that density bound-
aries are approximately as difficult to segment as the

INT-GS and LS-GS structure boundaries in the
previous experiment. The thresholds for the locally
scrambled (LS) condition were lower than those for the
intact (INT) condition by a small but systematic
difference in each of the observers. A two-tailed paired-
samples t test finds this difference statistically signifi-
cant t(3)¼ 8.01, p , 0.05, but the effect size (d¼ 0.96) is
modest. It appears that the density boundary is slightly
easier to segment in locally scrambled textures.

These results demonstrate that differences in micro-
pattern texture density can support segmentation
without any other differences in global phase structure
and support the idea that density modulation was a
very important contributor to performance for the
structure boundaries in Experiment 1. We found a
small but consistent improvement in density-based
segmentation for locally scrambled textures compared
to intact textures. This was unexpected, because in the
previous experiment the performance difference due to
local structure showed impairment, rather than im-
provement, for locally scrambled textures.

Model

Results from the above psychophysical experiments
were compared to those obtained by simulating
identical experiments with a filter-rectify-filter style
model acting as the observer (Figure 1), as described in
detail in Zavitz and Baker (2013).

Methods

In the first filtering stage, a given stimulus image was
convolved with a bank of log-Gabor filters (Kovesi,

Figure 5. Examples of density boundary stimuli used in

Experiment 2, shown at a modulation depth of 100%. Each

stimulus is a modulation between a texture with 595 micro-

patterns and one with 2,975 micropatterns, either intact

structured edgelets (INT) or locally phase-scrambled edgelets

(LS). In the globally scrambled (GS) condition each texture was

phase scrambled before being combined. Because no visible

boundary was formed in the GS condition, it was not tested.
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2000) at two phases (even and odd), six orientations
(evenly spaced with bandwidths chosen for approxi-
mately uniform coverage), and four spatial frequencies
(160, 80, 40, and 20 cycles per image, spanning a range
equivalent to approximately 24.6 to 3.1 cycles/8 for
human observers, each with a bandwidth of approxi-
mately 1.5 octaves to provide coverage in frequency
space). The outputs of these filters were then full-wave
rectified and raised to a power k. We used k ¼ 0.5, in
accordance with our previous study (Zavitz & Baker,
2013) demonstrating that compressive intermediate
nonlinearities best capture the influence of texture
structure on segmentation performance. These signals
were summed to create orientation and spatial fre-
quency band-pass responses, which were convolved
with each of a pair of second stage filters: low spatial
frequency, odd-phase Gabors that were matched to the
possible boundary orientations (left and right oblique).
These responses were integrated over their area,
orientation, and spatial frequency to produce a scalar

response, raised to a power 1/k, and subjected to
additive noise drawn from a distribution with standard
deviation a to produce a pair of labeled outputs. The
boundary direction decision was determined according
to the larger of the outputs: left or right oblique.

Here we used the same model power law exponent
(k) that best-predicted human performance for orien-
tation and contrast boundary segmentation data in the
previous paper (Zavitz & Baker, 2013) and fit the noise
parameter (a) to minimize the sum of squares error for
each observer. We will address the effect of different
values of k in the Discussion.

Results

Figure 4 illustrates the model predictions (blue) of
the data for individual observers (black) in the
structure segmentation task. In the INT-LS condition
(open circles), where the only difference between

Figure 6. Results for individual observers in density segmentation task. Overall levels of performance were similar to those for the

structure boundary stimuli in the first experiment. All observers show a slight, but consistent, decrease in thresholds for the locally

scrambled (LS, light bars) condition, relative to the intact condition (INT, shaded bars). Model predictions shown in blue. Error bars

indicate standard error.
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textures is in their local structure, the model performs
at chance, which is in line with the poor human
performance observed in the same condition. In the
INT-GS condition (filled circles), for both human and
model observers, performance is best when the INT
texture is at low densities and thresholds increase with
density. Results in the LS-GS condition (open trian-
gles) are similar but with a slightly greater impairment
in performance at high densities. The model correctly
predicts that LS-GS texture boundaries would be
harder to segment than INT-GS boundaries at high
densities.

The model predictions and average human data in
the density segmentation experiment are shown in
Figure 6. The model predicts the overall level of
performance reasonably well but predicts no difference
between the intact (INT) and locally scrambled (LS)
textures, while the human observers have consistently
lower thresholds in the LS condition.

Discussion

In the first experiment, we observed that differences
in global phase structure (INT-GS and LS-GS), but not
local phase alignments (INT-LS), were sufficient to
enable segmentation robustly. We also found that
segmentation thresholds for boundaries between locally
scrambled and globally scrambled (LS-GS) textures
increased more quickly than in the intact and globally
scrambled (INT-GS) condition as density was in-
creased. In the second experiment, we demonstrated
that a density difference alone could enable segmenta-
tion and, in addition, that randomizing local phase
alignments (LS) led to slightly better performance. A
filter-rectify-filter style model with a compressive
intermediate nonlinearity was capable of segmenting
boundaries defined by structure or sparseness and of
predicting the influence of structural sparseness, though
not that of local structure. Further, we demonstrated
that the same parameter values that fit orientation and
contrast boundary segmentation in our previous study
also predicted most aspects of performance on bound-
aries defined by higher order structure, such as the
effect of global structure.

Psychophysics

For the structure segmentation condition in which
the boundary consisted only of a difference in local
structure (INT-LS), all of our observers were able to
segment the boundaries at above chance performance
when the modulation depth was 100%, but perfor-
mance was not sufficient to provide a well-defined

psychometric function and in some cases did not reach
the threshold level (75% correct) at all. The boundaries
in the INT-LS condition are evident by inspection
(Figure 3, bottom row) and therefore probably could
be segmented more reliably with a longer viewing time.
However, a segmentation-by-inspection approach
might be due to some other (potentially top-down)
mechanism. The varying ability of observers to segment
the INT-LS boundaries might be due to practice
effects. The most practiced observers were able to
segment this condition at the highest modulation
depths (100%) at the low densities and at slightly lower
modulation depths at higher densities. Less practiced
observers struggled with this condition at all densities,
and performance was at chance when the modulation
depth was decreased from 100%.

A major consequence of phase scrambling is a
reduction in sparseness. Consequently in the INT-GS
and LS-GS conditions, the difference in sparseness
between the two halves was large (i.e., a sparse INT or
LS texture paired with a GS texture), and segmentation
thresholds were lower than when the density difference
between these halves was smaller. Given this relation-
ship, it would make sense that performance degrades as
the density of the INT or LS texture is increased, since
the difference in sparseness would thereby be de-
creased. In Experiment 2 we went on to demonstrate
that density differences alone could indeed enable
segmentation.

The influence of local structure, however, seems
more difficult to understand. Orientation and contrast
boundary segmentation performance is the same for the
intact and locally scrambled conditions at a given
density (Zavitz & Baker, 2013), which suggests that
local phase alignment is not encoded by the mecha-
nisms that segment these boundaries. Yet in Experi-
ment 1, performance is the same in the INT-GS and
LS-GS conditions at low densities but different at the
highest density tested. Furthermore, in the density
segmentation task, we see a small but consistent
performance impairment in the INT condition. Because
phase scrambling reduces sparseness even on a small
scale, LS micropatterns may be effectively slightly less
sparse than INT micropatterns. It may even be the case
that because this difference in sparseness arises from
the micropatterns themselves, the more micropatterns
are added (as in the high density conditions), the
greater the difference in sparseness between INT and
LS textures having the same number of micropatterns.
If this were the case, in Experiment 1 we would expect
to see segmentation occurring in the INT-LS condi-
tions. It does occur for some observers, in whom we see
what might be a slight trend toward lower thresholds in
higher density conditions as would then be expected.
We would also expect that the LS-GS condition would
be more difficult than the INT-GS condition at higher
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densities, which appears to be the case. Finally, in
Experiment 2, the LS condition would be easier if the
effective sparseness difference between its constituent
halves is greater than implied simply by the difference
between their numbers of micropatterns. Thus local
differences in sparseness might explain these effects of
local structure in human observers, though it is unclear
why the model is not sensitive to these differences. One
possibility might be that we have used inappropriate
spatial frequencies or bandwidths for the model’s first-
stage filters. It is unlikely that the model is using
insufficiently high spatial frequencies to match those of
human vision, because the highest spatial frequency
filter used in the model (160 cycles per image, about 25
cycles/8) is well into the high frequency roll-off of the
human contrast sensitivity function (Campbell &
Robson, 1968). There are no gaps in the model’s first-
stage spatial frequency representation, so within the
range of 3–25 cycles/8, no information is lost. However,
the optimal tuning characteristics of the first stage
filters remain an interesting question—see for example,
Westrick and Landy (2013).

Model

We modeled our psychophysical results using the
same two-stage filter model as used previously to
predict thresholds for orientation and contrast bound-
ary segmentation (Zavitz & Baker, 2013). This model,
using the same shape of nonlinearity (k¼ 0.5) as in our
previous work, successfully captured the ability of
global phase structure to enable segmentation as well as
the influence of global structure on those thresholds,
though it did not account for the differing effects of
local phase structure on either structure or density
segmentation thresholds or the (very limited) ability to
segment boundaries in the INT-LS condition.

The model’s ability to segment boundaries defined
by differences in textural structure is due to the non-
square-law nonlinearity applied before early stage
responses are spatially pooled. The stimuli are RMS
balanced, so with a square law the model’s segmenta-
tion performance does not exceed chance. A power-law
exponent greater than two produces a larger response
for the high local contrast of the sparse textures, while a
value less than two boosts the relatively low local
contrasts of dense textures. This differential response
depending on the distribution of contrast energy
(whether it is spread out and therefore dense, or
clumped and sparse) allows the model to segment
textures that differ in the kinds of structure tested here.
A consequence of translating density differences into
energy-like differences is that there should be a contrast
decrement one could apply to one of the textures to null
the appearance of the density boundary (as it is nulled

for the model when k ¼ 2). This might not necessarily
be something we would expect to observe psycho-
physically, since the overall percept might be mediated
by a population of FRF-like neurons having a
distribution of nonlinearities and thus different null
points. For example, Mineault, Khawaja, Butts, and
Pack (2012) inferred just such a distribution of
intermediate nonlinearities between MT and MST.

The filter-rectify-filter model is typically imagined as
having a square-law intermediate nonlinearity, corre-
sponding to segmentation based simply on Fourier
energy (Heeger, 1992). The only study that has
quantitatively evaluated the shape of the nonlinearity,
to our knowledge, is that of Graham and Sutter (1998),
who found a value greater than two. In our previous
investigation using orientation- and contrast-defined
boundaries we found that, while both expansive (k . 2)
and compressive (k , 1) nonlinearities could explain
the results broadly, a compressive nonlinearity pro-
vided a better quantitative fit to the data (Zavitz &
Baker, 2013).

We tested the present model with other values of k
(Figure 7) and measured its ability to predict both
individual and average observer thresholds by mea-
suring sum-of-squares error. We again found that
lower values of k tend to produce better model
performance. There are two main reasons we might
have found an optimal k , 2: (a) stimulus contrast and
(b) stimulus conditions and modeling approach.

The contrast response functions of early visual
neurons typically have a sigmoidal shape (Albrecht &
Hamilton, 1982), wherein they are expansive at low
contrast and compressive at higher contrasts. We
conducted our experiments well above contrast detec-
tion thresholds, which could result in responses at the
compressive part of contrast response functions. It is
possible that the stimuli used by Graham and Sutter
(1998) were at sufficiently low contrasts to evoke
responses at the expansive part of the relevant neurons’
classical receptive field. However, because the contrast
measures, stimuli, and tasks employed by Graham and
Sutter (1998) were quite different from those used in
this study, it is difficult to make a direct comparison
between their work and ours.

Another difference from previous studies is the
consideration of local effects such as the comparison of
intact and locally scrambled texture conditions, which
provided a major constraint for the model. All of the
power law exponents we tested (except for a perfect
square law) were able to account for our primary
finding that sparseness impairs segmentation. However,
an expansive nonlinearity predicts segmentation
thresholds in the INT-LS condition approximately the
same as those in the INT-GS or LS-GS conditions,
which does not agree with our finding of much higher
thresholds for INT-LS.
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To our knowledge, this is the first time a two-stage
filter model has successfully been applied to segmen-
tation of textures that differ only in their phase
structure. However many of the attributes of our model
are very common in the literature. Filter-rectify-filter
models can be thought of as a type of summation
model, in this case summing across early stage filters
and over the spatial support of the second-stage filter.
We chose to use Minkowski summation (Shepard,
1964), which raises the summation arguments to a
power with the resulting sum raised to the reciprocal of
the same power. Minkowski summation has often been
employed as a model of psychophysical channel
summation (e.g., Meese & Summers, 2007; To,
Baddeley, Troscianko, & Tolhurst, 2010), though in
most cases with an exponent of three to four. The
compressive nonlinearity that best fits our results is
however in agreement with a number of recent studies
showing evidence of subadditive summation in visual
processing demonstrated in a variety of ways: cascade
models with compressive nonlinearities (Mineault,
Khawaja, Butts, & Pack, 2012), divisive normalization
(Rust, Mante, Simoncelli, & Movshon, 2006), or

surround suppression (Tsui, Hunter, Born, & Pack,
2010).

We have found that the same model, with the same
parameters, can predict boundary segmentation
thresholds for orientation and contrast boundaries
defined over synthetic or natural textures very well
(Zavitz & Baker, 2013). This model also predicts
boundary segmentation thresholds, and the influence of
global structure on those thresholds, for boundaries
defined by higher order structure.

Sparseness

Sparseness can be described as the extent to which
the energy in the image is spatially aggregated into local
high-contrast regions, separated by regions relatively
empty of local content (Hansen & Hess, 2007). It has
been considered an independent texture property
because it is a specifically adaptable feature (Durgin,
1995), dissociable from luminance spatial frequency
adaptation (Durgin & Huk, 1997). Dakin, Tibber,
Greenwood, Kingdom, and Morgan (2011) suggest
that perception of sparseness can be measured by the
ratio of the modulation depth of higher spatial
frequency contrast to the modulation depth of lower
spatial frequency contrast, which is essentially a third-
order comparison (i.e., requiring an additional stage of
processing beyond an FRF-type model). The results of
this study indicate that, with an appropriate interme-
diate summation nonlinearity, density can act as an
intensive property that, like contrast, affects the
response strength without the necessity of a third
processing stage.

With respect to segmentation, Julesz (1981b) sug-
gested that ‘‘texton density’’ was the primary statistical
comparison that enabled segmentation. However his
formulation has not been reconciled with an energy-
based approach to segmentation. His definition of
texton density—the spacing between features that
match internal texton templates—is unlike the concept
of density we used to construct the textures used in this
study. In particular, our micropatterns are placed so
that they overlap. To Julesz, this would destroy the
identity of the texton.

Structure-defined boundary segmentation

Boundaries defined by structure in the absence of
differences in amplitude spectrum have seldom been
examined. Julesz (1981a) and Victor, Chubb, and
Conte (2005) used textures that differed only in their
third- or fourth-order spatial correlations, but this
meant that the amplitude spectra of these ‘‘even’’ and
‘‘odd’’ textures were the same only when the categories

Figure 7. Minimum sum of squares error (SSE) for the model with

three values of the power law exponent in the intermediate

nonlinearity, compared to the average human data. The SSE was

computed using thresholds from both the structure and density

tasks (except for the INT-LS condition where thresholds could not

be consistently estimated). SSE computed separately on the

results from the structure and density tasks follows the same

trend. Results are not shown for k¼ 2 (X), because model

thresholds could not be obtained in this condition as perfor-

mance did not exceed chance. Overall, SSE is lowest with a

compressive nonlinearity (in this case k¼ 0.5) and gets worse as

the nonlinearity becomes more expansive. Minimum SSE for the

model compared to individual observer data is indicated with

gray open circles at each value of k.
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were taken as ensembles. Any given pair of such
textures contained a difference in the orientation
bandwidth of the amplitude spectrum, and thus (unlike
the stimuli used here) they could be segmented on the
basis of lower order statistics (Turner, 1986).

Graham, Sutter, and Venkatesan (1993) used ele-
ment arrangement patterns that differed in only their
higher order statistics, as we have defined the term.
However the element sizes were quite large and
relatively few were arrayed to form each region,
making it questionable to what extent they would be
processed by the visual system as ‘‘texture’’ (Wilkinson,
1990). Graham et al. (1993) used a three-stage model
(FRFRF) to account for the extra comparison that
seemed to be necessary to segment the element patterns.
Here we demonstrated that a third stage of the model
may not be necessary, and a single presummation
compressive nonlinearity can be sufficient for differ-
ences in the arrangement of the energy in the texture to
enable segmentation.

Conclusions

In these experiments we demonstrated that differ-
ences in the structure, rather than simply the spectrum
of Fourier energy, in a texture could both enable and
influence segmentation performance. We have shown
that a two-stage model with a compressive intermediate
nonlinearity can predict thresholds for a wide range of
stimuli: contrast boundaries defined over natural
textures and contrast and orientation boundaries
defined using naturalistic textures (Zavitz & Baker,
2013), as well as the structure boundaries in naturalistic
textures modeled here. This work also raises interesting
questions about the effect of local texture structure,
which undeniably influences performance but does so
in ways that are not predicted under current models.

Keywords: texture, segmentation, second order, filter
rectify filter
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