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Natural versus Synthetic Stimuli for Estimating Receptive
Field Models: A Comparison of Predictive Robustness
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An ultimate goal of visual neuroscience is to understand the neural encoding of complex, everyday scenes. Yet most of our knowledge of
neuronal receptive fields has come from studies using simple artificial stimuli (e.g., bars, gratings) that may fail to reveal the full nature
of a neuron’s actual response properties. Our goal was to compare the utility of artificial and natural stimuli for estimating receptive field
(RF) models. Using extracellular recordings from simple type cells in cat A18, we acquired responses to three types of broadband stimulus
ensembles: two widely used artificial patterns (white noise and short bars), and natural images. We used a primary dataset to estimate the
spatiotemporal receptive field (STRF) with two hold-back datasets for regularization and validation. STRFs were estimated using an
iterative regression algorithm with regularization and subsequently fit with a zero-memory nonlinearity. Each RF model (STRF and
zero-memory nonlinearity) was then used in simulations to predict responses to the same stimulus type used to estimate it, as well as to
other broadband stimuli and sinewave gratings. White noise stimuli often elicited poor responses leading to noisy RF estimates, while
short bars and natural image stimuli were more successful in driving A18 neurons and producing clear RF estimates with strong
predictive ability. Natural image-derived RF models were the most robust at predicting responses to other broadband stimulus ensem-
bles that were not used in their estimation and also provided good predictions of tuning curves for sinewave gratings.

Introduction
A primary objective in visual neurophysiology is to create neu-
ronal models with sufficient generality to predict responses to
arbitrary stimuli (Rust and Movshon, 2005). However, a fun-
damental outstanding question is what kind of stimulus is most
appropriate for the creation of such models (Carandini et al.,
2005). Much of what we know about visual processing has been
obtained from responses to simple artificial stimuli such as bars
and sinusoidal grating patterns that rarely occur in the natural
environment in which visual systems evolved (Felsen and Dan,
2005). Natural images are statistically much richer, functionally
more relevant, and in some cases more effective for driving visual
cortex neurons, thereby potentially revealing more complex un-
derlying visual mechanisms.

System identification methods provide quantitative func-
tional models describing how sensory neurons integrate signals
from different receptive field (RF) locations and times to generate
a response. Most common is reverse correlation (Ringach and
Shapley, 2004), which has been used to map the spatiotemporal

receptive field (STRF) of sensory neurons. However reverse cor-
relation has major drawbacks stemming from its requirement of
spectrally white stimuli; white noise can sometimes be ineffective
for driving visual neurons, particularly in later processing stages
(Alonso and Martinez, 1998; Felsen and Dan, 2005), and it lacks
the rich features found in natural images, potentially leaving
complex RF properties uncharacterized. Recent studies have be-
gun to use photographs of the natural environment as stimuli for
system identification (Ringach et al., 2002; Touryan et al., 2005).

Here we assess models derived from system identification us-
ing synthetic and natural stimuli in three ways. First, how good is
the models’ predictive ability for the same stimuli used to esti-
mate them? Second, how robust are these models when used to
predict neuronal responses to other stimuli? Third, how well do
these models characterize a cell’s optimal tuning properties to
sinewave gratings? To address these questions, we have employed
a regression algorithm with regularization (Theunissen et al.,
2001; Wu et al., 2006; see also http://strflab.berkeley.edu) to esti-
mate the full three-dimensional (3D) STRF for linear–nonlinear
(LN) models of simple type cells in A18 of the cat. White noise has
been widely used and is theoretically optimal (Marmarelis and
Marmarelis, 1978). Short bars are quasi-white stimuli that better
drive neuronal responses (DeAngelis et al., 1993a). Natural image
stimuli allow us to estimate models under more realistic condi-
tions (Willmore et al., 2010). LN models of STRFs are conceptu-
ally intuitive and provide a compact description of simple cells
and a common ground for comparison of different approaches.
Secondary visual cortex is a more complex, intermediate-level
processing stage with neurons selective for complex patterns
(Hegde and Van Essen, 2000; Baker and Mareschal, 2001), thus
providing a more demanding test of these different approaches.
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We demonstrate that short bars and natural images are
more successful than white noise in producing clear RF esti-
mates with good predictive power. Models derived from nat-
ural images, however, generalize better to other stimulus types
as well as provide good predictions of tuning curves for sin-
ewave gratings.

Materials and Methods
Animal preparation. Anesthesia was induced by isofluorane/oxygen
3–5% inhalation, followed by intravenous (i.v.) cannulation and bolus
i.v. injection of thiopentone sodium (8 mg/kg) or propofol (5 mg/kg).
Surgical anesthesia was maintained with supplemental doses of thiopen-
tone sodium or propofol as required. Atropine sulfate (0.05 mg/kg i.v.)
or glycopyrrolate [30 �g intramuscular (i.m.)] and dexamethasone (0.2
mg/kg i.v. or 1.8 mg i.m.) were administered, and a tracheal cannula or
intubation tube was inserted. A craniotomy (A3/L4) over cortical area 18
(Tusa et al., 1979) was performed, followed by a small durotomy. The
cortical surface was protected with 2% agarose (Sigma, type 1-A) capped
with petroleum jelly. Local injections of bupivacaine (0.50%), a long
lasting anesthetic, were administered at all surgical sites. Throughout the
surgical procedure, body temperature was thermostatically maintained
at 37°C, and heart rate was monitored (Vet/Ox Plus 4700; Heska).

After completion of surgery, animals were connected to a respirator
(Ugo Basile 6025) and paralyzed with a bolus i.v. injection of gallamine
triethiodide (to effect), followed by infusion (10 mg � kg �1 � h �1). So-
dium pentobarbital (1.0 mg � kg �1 � h �1), or in later experiments
propofol (5.3 mg � kg �1 � h �1), was supplemented with fentanyl citrate
(7.4 �g � kg �1 � h �1) following a bolus injection (2.5 �g/kg). Both anes-
thesia regimes were further supplemented with oxygen/nitrous oxide
(70:30) and a continuous infusion of lactated dextrose-saline (2 ml/h i.v.)
was supplied. Expired CO2, EEG, EKG, body temperature, blood oxygen,
heart rate, and airway pressure were monitored and maintained at ap-
propriate levels.

Corneas were initially protected with topical carboxymethylcellulose
(1%) and subsequently with neutral contact lenses. Spectacle lenses, se-
lected with slit retinoscopy, were used to bring objects at a distance of 57
cm into focus. Artificial pupils (2.5 mm) were placed in front of the eyes.
The area centralis was determined by back projection of the optic disk
onto a tangent screen (Nikara et al., 1968; Fernald and Chase, 1971).

Daily maintenance included topical atropine sulfate (1%) and
phenylephrine hydrochloride (2.5%) to dilate the pupils and retract
the nictitating membrane respectively, as well as glycopyrrolate (16
�g) and dexamethasone (1.8 mg) administered i.m. All animal pro-
cedures were approved by the McGill University Animal Care Com-
mittee and are in accordance with the guidelines of the Canadian
Council on Animal Care.

Visual stimuli. Visual stimuli were generated on a Macintosh com-
puter (MacPro, 2.66 GHz Quad Core Intel Xeon, 6 GB, NVIDIA GeForce
GT 120) using custom software written in Matlab (MathWorks) and the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). A CRT monitor
(NEC FP1350, 20”, 640 � 480 pixels, 75 Hz, 36 cd/m 2) placed at a
viewing distance of 57 cm was used to display the stimuli. The mon-
itor’s gamma nonlinearity was measured with a photometer (United
Detector Technology) and corrected with inverse lookup tables.

Drifting sinewave gratings (3 Hz, 30% contrast) were presented within
a cosine-tapered circular window against a uniform background at the
mean luminance of the pattern. The same mean luminance was also
maintained during intervals between stimuli and presented as blank con-
ditions for measurement of spontaneous activity.

Three types of broadband stimulus patterns were employed for system
identification: white noise, short bars, and natural images (Fig. 1).
“White noise” stimuli (Fig. 1 A) were dense noise patterns with random
equiprobable black and white checks. “Short bar” stimuli (Fig. 1 B) con-
sisted of sparse equiprobable white and black bars (3:1 aspect ratio)
placed randomly without constraint on a background of mean lumi-
nance. The bar density was chosen so that �20% of the image area was
filled with bars. “Natural image” stimuli (Fig. 1C) were constructed from
high-quality digital photographs (McGill Calibrated Color Image Data-
base; Olmos and Kingdom, 2004), each of which was converted to mono-
chrome and divided into 480 � 480 pixel images. Nearly blank images
(e.g., sky, water) were rejected by setting a root mean square (RMS)
energy threshold (0.03 standard deviation of pixel values). Remaining
images were RMS-normalized with mean luminance removed. In each
case, a stimulus ensemble consisted of fresh independent patterns in each
frame, comprising sets of 375 images that were presented as 5 s movies.
Each stimulus presentation was preceded by a 1 s mean luminance blank
screen for measurement of spontaneous activity. Stimulus images were
displayed in a 480 � 480 pixel window and randomly changed on each

Figure 1. Example images from broadband stimulus ensembles. Shown are four frames of each type of broadband stimulus used in this study. A, Dense binary white noise (WN). B, Sparsely
structured short bars (SB). C, Natural images (NI).
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frame refresh, with mean luminance maintained between presentations.
Other types of stimuli were also pilot tested, including space–time cor-
related noise and “cat cam” movies (Einhauser et al., 2002), but both
these stimuli were relatively poor at driving A18 neurons and therefore
abandoned.

Extracellular single unit recording. In early experiments, extracellular
recordings were obtained using single-channel, glass-coated, platinum-
iridium or parylene-coated tungsten microelectrodes (Frederick Haer),
and in later experiments with silicon axial multi-electrodes (NeuroNexus
A1�16) or multi-shank tetrodes (NeuroNexus A4�1-tet). Electrodes
were advanced using a stepping motor microdrive (M. Walsh Electron-
ics, uD-800A). A primary, single-channel recording pathway incorpo-
rated an audio monitor, a window discriminator (Frederick Haer) to
isolate single units, and a delay-triggered oscilloscope to monitor isola-
tion. Spike times were recorded at a resolution of 100 �s (Instrutech,
ITC-18) and time referenced to the stimulus using an optical photo
sensor (TAOS T2L 12S) placed on the corner of the CRT monitor within
which images contained stimulus timing information. Later experiments
also incorporated a secondary, parallel, multi-channel recording path-
way (Plexon Recorder, version 2.3), in which complete raw signals were
acquired for all 16 channels at 40 kHz, and stored to hard disk for subse-
quent spike sorting and detailed analysis. One of the 16 channels was also
routed to the primary recording pathway for online analysis to guide the
recording protocol.

Manually controlled bar-shaped stimuli were used to assess the ap-
proximate location, orientation preference, and ocular dominance of
isolated neurons. The CRT monitor was centered on the receptive field,
and all subsequent stimuli were presented monocularly to the dominant
eye. Neurons were first characterized with conventional tuning curve
measurements using sinewave grating patterns to determine optimal
spatial frequency, orientation, and temporal frequency. The cell’s recep-
tive field was further localized by displaying small grating patches at a
grid of spatial locations, and the monitor repositioned as necessary. Each
of the three broadband stimulus types (white noise, short bars, or natural
images) was then presented. The check size (white noise) and the bar
width (short bars) were set to 1/4 to 1/6 of the spatial period of the
neuron’s optimal grating, and bar orientation was set to the neuron’s
optimal grating orientation (DeAngelis et al., 1993a). For each broad-
band stimulus type, three independent datasets were collected for train-
ing, regularization, and validation (Fig. 2 A, B), each requiring about
20 –30 min to acquire. The training stimuli consisted of 20 image ensem-

bles (total of 7500 unique images) repeated five times. The regularization
and validation stimuli each consisted of five image ensembles (1875
unique images each) repeated 20 times. This trade-off of stimulus diver-
sity versus repetitions was aimed at maximizing the informativeness pro-
vided by unique images (training), but minimizing response variance
(regularization, validation). This procedure was repeated for all three
stimulus types whenever it was possible to maintain isolation for suffi-
cient time.

A total of 281 datasets were collected from 73 neurons in 13 animals of
either sex. Other data were also collected from these animals as part of
several on-going projects in the same laboratory. Cells having average
spike frequencies of �1 spike/s in response to the stimulus image ensem-
ble were considered to be unresponsive.

Data analysis. In experiments with records of raw broadband re-
sponses, signals were reanalyzed post hoc to extract spike waveforms,
which were carefully classified using Plexon Offline Sorter (Plexon, ver-
sion 2.8.8) software. Conservative thresholds were set for clear separation
of distinct signals to ensure that analyses were performed only on spikes
from single neurons. All spike time data, whether from single-channel or
multi-channel recordings, were then analyzed in a common manner with
custom software written in Matlab (MathWorks). Gradient descent and
regularization (see below in this section) were implemented using func-
tions from the STRFlab ToolBox (http://strflab.berkeley.edu).

Responses to sinewave gratings were analyzed conventionally to pro-
duce tuning curves of average spike frequency as a function of spatial
frequency and orientation. Spatial frequency tuning curves were fit with
a Gaussian function to yield estimates of optimal frequency, bandwidth,
and response amplitude (DeAngelis et al., 1994):

R�sf � � ke��� sf�SFopt

� � 2� � R0, (1)

where k � maximum response amplitude; sf � measured spatial fre-
quency; SFopt � optimal spatial frequency; 1.65� � tuning bandwidth in
octaves; R0 � spontaneous response; and R(sf ) � fitted response as a
function of spatial frequency.

Orientation tuning curves were characterized by a vector-based sum-
mation method to indicate optimal orientation, optimal direction, ori-
entation bias, and direction bias (Worgotter and Eysel, 1987; Leventhal et
al., 2003):

Figure 2. System identification procedure. Neural responses of a simple type cell to three independent ensembles of a given broadband stimulus type were used to estimate receptive field models
and evaluate their predictive abilities. A, Model estimation. Training and regularization datasets were used to estimate a 3D (space – i, space – j, time – k) spatiotemporal receptive field, STRF. A
subsequent zero-memory nonlinearity (N) was fit from comparison with measured responses. The STRF and N together make up the estimated RF model. B, Model evaluation. The estimated RF
model’s response to the validation stimuli generate a predicted response, which was compared with the actual (measured) validation response. The quality of prediction was quantified with
raw/explainable VAF and amplitude/phase coherence analyses.
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OB �
�kRke

i2�k

�kRk

(2)

DB �
�kRke

i�k

�kRk

, (3)

where Rk is the response at stimulus orientation �k and OB and DB are
complex values whose magnitudes (�OB�, �DB�) are the orientation bias
and direction bias respectively. �OB� and �DB� have a bounded range
between 0 and 1 (dimensionless), where 0 indicates no orientation/
direction selectivity and 1 represents absolute selectivity. Cells with
orientation/direction bias values greater than 0.1 are considered to be
orientation/direction sensitive (Leventhal et al., 1995). The angles of OB
and DB provide the optimal orientation and optimal direction, respec-
tively. Neurons were classified as simple or complex type cells on the basis
of poststimulus time histogram (PSTH) modulation by an optimal grat-
ing (Skottun et al., 1991), and only simple type cells were used for sub-
sequent analysis.

For responses to image ensembles, spike times were collected into
PSTHs binned at the stimulus refresh rate (bin width of 13.3 ms) to create
analog responses that were then averaged across repetitions. To reduce
the number of estimated parameters in the STRF, images within each
ensemble were spatially downsampled in proportion to the stimulus
check size or bar width to yield image sizes typically in the range of 12 2

to 24 2.
Each neuron’s response to an image ensemble was estimated within

the framework of a generalized linear model (GLM) (Fig. 2 A), consisting
of a linear STRF followed by a zero-memory nonlinearity:

w�t� � �
i�1

M �
j�1

M �
k�1

8

h�i, j, k�s�i, j, k � t� (4)

r�t� � �wa�t��� � n�t�, (5)

where h(i, j, k) � linear filter (STRF) “weight” of i,j th pixel and k th time
index; s(i,j,k) � stimulus image at i,j th pixel and k th time index; i,j �
indices of (downsampled) pixels, typically ranging from 1 to M; k � time
(lag) index, ranging from 0 to 7; M � downsampled image size, typically
circa 12–24; w(t) � response of linear filter as a function of time (t);
�. . .� � denotes half-wave rectification; a � exponent of power law non-
linearity; n(t) � noise; and r(t) � model response as function of time (t).

The spatiotemporal filter weights hijk were optimized with iterative
gradient descent to minimize the mean square error between the re-
sponses r(t) of the model filter and those measured from the neuron,
using the entire training dataset on each iteration. GLMs are guaranteed
to have a unique global minimum (i.e., convex problem) (McCullagh
and Nelder, 1989), making them amenable to gradient descent optimi-
zation methods.

Since the number of parameters being fit (e.g., 16 � 16� 8 � 2048) is
on the order of the number of data points (375 � 20 � 7500) and the
noise n(t) is not negligible, this optimization can lead to the fitted filter
weights in part reflecting the particular noise in the training dataset
rather than the system function. This “overfitting” can be circumvented
by employing regularized methods that incorporate a constraint or a
priori assumption typically through the use of a penalty function that
discourages high-valued coefficients or through enforcing priors such as
smoothness or sparseness (Willmore and Smyth, 2003; Wu et al., 2006).
Recent studies have successfully used a number of different forms of
regularized methods including ridge regression (Machens et al., 2004),
Tikhonov-Miller regularization (Smyth et al., 2003), and early stopping
(Willmore et al., 2010) to reconstruct RFs of sensory neurons. We imple-
mented regularization here through early stopping (Hagiwara, 2002),
which halts the gradient descent algorithm prematurely before it begins
fitting to the noise. To achieve this early stopping, the model estimate
from each iteration of the gradient descent was tested for its predictive ability
on the regularization dataset—when the prediction error ceased to decline
and started to increase, the gradient descent algorithm was halted. Such early

stopping regularization acts to avoid fitting unnecessarily large values to the
filter weight parameters hijk (Hagiwara, 2002), resulting in estimated recep-
tive fields that look less “noisy” while having better predictive ability on novel
datasets. Early stopping has proven highly effective in machine learning and
neural network modeling (Bishop, 2006).

The power law parameter (a) of the zero-memory nonlinearity was
then fit using a simplex algorithm (Nelder-Mead method—Matlab’s
fminsearch), between the measured neuronal responses (training dataset)
and their predicted values based on convolution of the STRF with the
training image ensembles. For some datasets in preliminary analyses,
other nonlinear functions (e.g., Naka-Rushton, third-order polynomial)
were also fit but did not provide significant improvements.

For comparison with traditional approaches, we also analyzed re-
sponse to white noise stimulus ensembles using conventional reverse
correlation (Marmarelis and Marmarelis, 1978). All aspects of the reverse
correlation analysis (i.e., binning, averaging across repetitions, down-
sampling, zero-memory nonlinearity estimation) were the same as those
used for the GLM approach. Note that the results from reverse correla-
tion with white noise stimuli should be identical to those from the gra-
dient descent, iterative regression analysis (without regularization), if the
system noise, n(t), is negligible and the dataset is sufficiently large.

To measure the estimated RF model’s predictive ability for novel stim-
ulus ensembles, the validation dataset was used to compare with a pre-
dicted response based on simulated responses of the final estimated LN
model, i.e., convolution with the STRF, followed by the zero-memory
nonlinearity (Fig. 2 B). The predictive accuracy was quantified as “vari-
ance accounted for” (VAF), calculated as the square of the correlation
coefficient ( R), expressed as a percentage:

R �
�	� x � x� �� y � y��


��� x � x� �2�� y � y��2
(6)

VAF � 	100�R�2
, (7)

where x,y � actual and predicted responses, respectively; x�,y� � mean of
the actual and predicted responses, respectively; and R � correlation
coefficient. The VAF is the percentage of variance in the actual measured
response that is accounted for in the predicted response.

We often observed that the estimated models more accurately pre-
dicted the timing of a response (i.e., phase) than its amplitude, as can be
seen in the example of Figure 3A. To explore this phenomenon, we
measured amplitude and phase coherence (Drongelen, 2007), which es-
sentially splits the VAF into amplitude and phase components, measured
as a function of temporal frequency (�). These quantities were calculated
by taking the average cross-spectrum between actual and predicted re-
sponses (Sxy) normalized by the square root of the average power spectra
for actual (Sxx) and predicted (Syy) responses:

C��� �
�Sxy����

��Sxx�����Syy����
, (8)

where C(�) is a complex-valued function of temporal frequency �, its
magnitude is the amplitude coherence, and its angle is the phase coher-
ence (�. . .� denotes average across trials).

The amplitude coherence ranges from zero to an ideal value of unity.
The phase coherence normally ranges from 0° (ideal) to 90° (random)
but can have values up to 180° (anti-phase). The example in Figure 3B
shows amplitude/phase coherence values represented in a polar plot in
which the plotted points are amplitude/phase coherence values at differ-
ent temporal frequencies. These plots are further summarized by two
indices: the average amplitude coherence (“amp COH”) and the average
phase coherence (“phase COH”). Amp COH and phase COH are com-
puted by averaging the amplitude and phase (collapsed to 0 –180°) co-
herence functions across temporal frequencies.

In practice, the above “raw” VAF is never 100% for two reasons: first,
the neural responses are very noisy; second, the LN model is undoubtedly
inadequate due to other neural nonlinearities not instantiated in the model
architecture. We attempt to disambiguate these two sources of reduced VAF
by the method of David and Gallant (2005), illustrated in Figure 3, C and D.
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A “noise ceiling” is determined by incrementally increasing the amount of
data used to validate and train the STRF. The noise ceiling in the validation
dataset is determined by calculating the raw VAF between the predicted and
actual responses averaged across an increasing number of repetitions. The
resulting points (Fig. 3C) are fit with a smooth asymptotic curve (solid red
line):

1

R2 �
1

Rmax
2 �

A

M
, (9)

where R2
max � the fraction of variance that would be explained if there were

no noise in the validation dataset; A � constant, reflecting trial-to-trial vari-
ability; M � number of repetitions; and R2 � the squared correlation coef-
ficient (i.e., raw VAF) between actual and predicted responses. The final
plotted point corresponds to the raw VAF (38%) when the actual response is
averaged across all repetitions.

The noise ceiling in the training set is determined in the opposite
fashion by calculating the raw VAF between the actual and predicted
responses from STRFs estimated using increasing numbers of image en-
sembles. These training VAFs are then corrected for the amount of noise
in the validation dataset by solving Equation 9 for Rmax

2 and using the
fitted value of A. The resulting validation noise-corrected VAFs (i.e.,
Rvalcorr

2 ) are plotted (Fig. 3D) and fit with the smooth asymptotic curve
(solid red line):

1

Rvalcorr
2 �

1

Rideal
2 �

B

T
, (10)

where Rideal
2 � ideal squared correlation coefficient value if there were no

corrupting noise (i.e., “explainable” VAF); B � constant, reflecting trial-to-

trial variability; T � number of stimulus image ensembles; and Rvalcorr
2 �

squared correlation coefficient value from the training dataset that has been
corrected for validation dataset noise. The explainable VAF (exp VAF)
(45%) is taken as the fitted plateau value (Rideal

2 ) of the curve. Thus, the
explainable VAF provides an estimate of the fraction of total response vari-
ance that could theoretically be predicted in the absence of neuronal noise
(David and Gallant, 2005).

Figure 3. Quantifying indices for predictive power. Accuracy of estimated RF models was assessed using measures of raw/explainable VAF and amplitude/phase coherence. A, Example of actual
(blue) and predicted (red) neuronal response amplitudes graphed against stimulus frame number. It is apparent that the estimated RF model does a better job of predicting when responses occur
than predicting their amplitudes. B, Amplitude and phase coherence values at different temporal frequencies displayed as a polar plot. Better RF model performance yields more points clustered
around ideal values of 1 for amplitude and 0° for phase. Average amplitude and phase coherence values across temporal frequencies, amp COH and phase COH, were used as summary statistics. Amp
COH is a dimensionless quantity between 0 and 1, while phase COH ranges between 0° and 180°. C, The noise ceiling in the validation dataset was determined by calculating the VAF between
predicted and actual responses, as the number of repetitions used in the actual response was increased. The results were fit with a smooth curve (solid red line) and the final plotted point taken as
the raw VAF (38%), i.e., when the actual response was averaged across all repetitions. D, The noise ceiling in the training dataset was determined by calculating the VAF between actual and predicted
responses, as the number of stimulus image ensembles used in the STRF estimation was increased. The explainable VAF (45%) is defined as the plateau value of the fitted curve (solid red line).

Figure 4. VAFs for reverse correlation and regularized GLM. Comparing reverse correlation
and regularized GLM system identification methods on RF models derived from white noise.
Points lie below the 1:1 equality line (diagonal), indicating that regularized GLM provides RF
models with better predictive performance.
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Each RF model was used in simulations to predict responses to the
same stimulus image ensemble used to estimate it, as well as to the other
stimulus types. For example, a RF model derived from white noise stim-
uli was used to predict responses to another ensemble of white noise, as
well as to ensembles of short bars and natural images. VAFs were com-
puted between the simulated predictions from the three stimulus types
and the actual measured responses in the respective validation datasets.
Comparison of these VAFs indicated how well the RF models derived
from the different stimulus types could generalize to other stimuli that
were not used to estimate them.

Further simulations were conducted to assess how well the estimated
RF models could predict grating tuning curves for spatial frequency and
orientation. Raw VAFs were computed between the simulated tuning
curve predictions and the actual measured tuning curves. In addition,
characteristic parameters were calculated for each tuning curve (as
described above) and systematically compared, i.e., optimal spatial
frequency, bandwidth, response amplitude, optimal orientation, orien-
tation bias, optimal direction, and direction bias.

Extensive validation tests, using both hardware and software models,
were performed to ensure the accuracy of the RF model estimates and the
quantifying metrics. A hardware FPGA model of a simple type visual
cortex neuron (Li et al., 2010) was used to test the data acquisition system,
stimulus presentation software, and data analysis programs. Responses col-
lected from the FPGA model verified that our system identification software
could correctly yield the spatial RF and the temporal latency. Using software-

simulated models of a noiseless simple cell with specified delays and the
above GLM system identification, we were able to accurately extract the
model’s spatiotemporal filter at the model’s simulated delay. Quantifying
measures (i.e., raw/explainable VAF and amplitude/phase coherence) were
validated by adding varying amounts of noise to the model’s response. As
expected, amplitude and phase coherence values were nominal when there
was no noise and declined progressively with increasing noise. In a model
with no noise, the raw and explainable VAFs were nearly the same, with
values of �100%. When noise was added, the raw VAF dropped but the
explainable VAF was maintained at nearly 100%.

Results
For comparison with traditional methods, neuronal responses to
white noise were analyzed using reverse correlation as well as
regularized GLM. Figure 4 compares VAFs for these two system
identification methods in a scatter plot— each point represents
results from a different neuron. Note that all the points lie below
the 1:1 equality line, indicating that RF models from a regularized
GLM approach yield better predictive ability than those from
reverse correlation. Indeed, regularized methods have been
shown to produce accurate estimates of RFs using fewer stimuli
than other methods (Willmore and Smyth, 2003). All subsequent
system identification analysis used regularized GLM, both for

Figure 5. Example RF estimates. RF estimates for a simple cell derived using three stimulus types. Each row depicts results for one stimulus type showing, from left to right, the following: an
example stimulus image; a spatiotemporal RF estimate across 8 time lags (0.0 ms to 93.3 ms); fitted zero-memory nonlinearity, ZMN, of the actual response (Act. Resp.) against the predicted
response (Pred. Resp.) with the exponent of the power law nonlinearity (a); raw/explainable VAFs and amplitude/phase COHs to an independent validation dataset; and polar plots of amplitude/
phase coherence values at different temporal frequencies. Ideal values of amplitude and phase coherence are 1 and 0°, respectively. A, White noise stimuli result in a RF estimate with flanking
elongated ON and OFF regions (red and blue areas, respectively), with a right oblique orientation and phase progression across successive time lags. However, the RF estimate is noisy-looking with
low VAFs (raw VAF � 2.9%, exp VAF � 8.4%) and amplitude/phase coherence values that are highly scattered (amp COH � 0.69, phase COH � 77.67). B, Short bar stimuli result in a very clear,
similarly structured RF estimate with high VAFs (raw VAF � 45.0%, exp VAF � 51.3%) and amplitude/phase coherence values clustering near optimal (amp COH � 0.77, phase COH � 31.42). C,
Natural image stimuli result in a RF estimate that is noisier than for short bars, but the spatial structure of the ON and OFF regions is clear, the VAFs are reasonable (raw VAF � 20.5%, exp VAF �
36.8%), and the amplitude/phase coherence values are somewhat clustered (amp COH � 0.71, phase COH � 51.90). For all three stimulus types, the power law nonlinearity is expansive, with an
exponent ranging from 2.0 to 2.3.
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this reason and because it provides valid results for stimuli that
are spectrally not white.

RF estimates were derived from the three broadband stimulus
types whenever possible and evaluated based on how well they
could act as models to predict responses to an independently
collected validation dataset, using raw/explainable VAFs and am-
plitude/phase coherence values as criteria. To assess the robust-
ness of these RF models for other types of stimuli, they were
subsequently used to predict responses to the other types of stim-
ulus ensembles, as well as spatial frequency and orientation tun-
ing for sinewave gratings.

Evaluation of receptive field estimates derived from different
types of broadband stimuli
Examples of RF estimates and indices of their predictive perfor-
mance are illustrated for four neurons in Figures 5– 8, showing in
each case results for white noise, short bars, and natural images in
three rows. Each row shows, from left to right, an example stim-
ulus image, spatial RF estimates at each of eight temporal lags, the
fitted zero-memory nonlinearity (ZMN), and predictive perfor-
mance indices (VAFs, COHs).

For the neuron in Figure 5, all three types of stimulus ensem-
bles produce RF estimates with similar spatiotemporal struc-
tures: flanking elongated ON and OFF regions with a right-

oblique orientation and a phase progression across successive
time lags. However short bars (Fig. 5B) give the cleanest-looking
RF estimate, which also yields high VAFs (raw VAF � 45.0%, exp
VAF � 51.3%) and amplitude/phase coherence values that clus-
ter nearer the optimal values of unity and 0° (amp COH � 0.77,
phase COH � 31.42). Natural images (Fig. 5C) produces RF
estimates with moderate VAFs (raw VAF � 20.5%, exp VAF �
36.8%) and amplitude/phase coherence values that cluster about
optimal (amp COH � 0.71, phase COH � 51.90). White noise
(Fig. 5A) produces a noisy-looking RF estimate with very low
VAFs (raw VAF � 2.9%, exp VAF � 8.4%) and highly scattered
amplitude/phase coherence values (amp COH � 0.69, phase
COH � 77.67).

Figure 6 shows results from a cell with a clear, horizontally
oriented OFF zone accompanied by weaker flanking ON regions
and an upward phase progression across temporal lags. However
in this case the three kinds of stimuli produce RF estimates with
varying types of structure. For example, flanking ON response
regions are minimal for white noise (Fig. 6A), increase slightly for
short bars (Fig. 6B), and are very apparent with natural images
(Fig. 6C). Also, the OFF response estimated from short bars (Fig.
6B) seems to be more elongated than the others. Short bars (Fig. 6B)
produces a clear RF estimate with high VAFs (raw VAF�52.6%, exp
VAF � 63.5%) and amplitude/phase coherence values that cluster

Figure 6. Example RF estimate as in Figure 5 for a neuron giving somewhat different RF estimates for different stimulus types. All RF estimates show a horizontally oriented OFF zone accompanied
by weaker flanking ON regions and an upward phase progression across time lags. A, RF estimate derived from white noise has minimal flanking ON regions in comparison to the other stimuli and
a noisy-looking structure with low VAFs (raw VAF � 6.1%, exp VAF � 9.6%). Amplitude and phase coherence values are scattered (amp COH � 0.82, phase COH � 69.76); however, a larger
percentage of points lie at a greater radial distance from the origin, indicating that the amplitude could be reasonability predicted. B, RF estimate derived from short bars has slightly increased
flanking ON regions and an elongated OFF response. It is also less noisy-looking with very high VAFs (raw VAF � 52.6%, exp VAF � 63.5%) and amplitude/phase coherence values clustering near
optimal (amp COH � 0.85, phase COH � 35.09). Again notice the particularly high amplitude coherence values. C, RF estimate from natural images has the most apparent flanking ON regions. It
is also noisy-looking with reduced raw VAF (18.6%) but a quite improved explainable VAF (42.1%). Amplitude/phase coherence values are somewhat clustered about optimal (amp COH � 0.74,
phase COH � 56.64). For all three stimulus types, the power law nonlinearity is expansive with an exponent ranging from 2.2 to 3.1. Act. Resp., Actual response; Pred. Resp., predicted response.
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near optimal (amp COH � 0.85, phase COH � 35.09). Note the
particularly high amplitude coherence values, indicating that in
this example the prediction was good not only for the timing of
the response but also its amplitude. Natural images (Fig. 6C)
produce a noisy-looking RF estimate with reduced raw VAF
(18.6%), but nevertheless the explainable VAF (42.1%) is quite
good. Amplitude/phase coherence values are somewhat clustered
about optimal (amp COH � 0.74, phase COH � 56.64), al-
though not as well as for short bars. White noise (Fig. 6A) again
performs poorly, with a noisy-looking RF estimate and very low
VAFs (raw VAF � 6.1%, exp VAF � 9.6%). The amplitude/phase
coherence values, however, are clustered at higher amplitude but
very scattered phase (amp COH � 0.82, phase COH � 69.76),
indicating that in this case the amplitude of the response could be
more reliably predicted than the timing.

Figure 7 shows an example of a cell for which all three stimulus
types produce RF estimates with vertically oriented, flanking ON
and OFF zones that show a phase reversal at later time lags. Short
bars (Fig. 7B) again produce the cleanest-looking RF estimate
with reasonable VAFs (raw VAF � 21.8%, exp VAF � 32.9%)
and amplitude/phase coherence values that cluster loosely about
optimal (amp COH � 0.74, phase COH � 52.12). Natural im-
ages (Fig. 7C) produce a somewhat noisy RF estimate with a low
raw VAF (10.2%) but a much improved explainable VAF
(30.5%) that is nearly equal to that for short bars and amplitude/
phase coherence values showing less clustering near optimal
(amp COH � 0.69, phase COH � 67.55). White noise (Fig. 7A)

again performs poorly with a noisy RF estimate, very low VAFs
(raw VAF � 6.1%, exp VAF � 8.7%), and scattered amplitude/
phase coherence values (amp COH � 0.68, phase COH � 68.77).

For the somewhat unusual cell in Figure 8, all three stimulus
types produce RF estimates with a similar-looking punctate
structure that is lacking clearly oriented domains, although short
bars reveal a slight left-oblique orientation. In each case, the RF is
predominantly OFF at shorter time lags followed by reversal to
ON at later time lags. Short bars (Fig. 8B) again produce the
cleanest-looking RF estimate with very high VAFs (raw VAF �
60.5%, exp VAF � 62.4%) and amplitude/phase coherence values
that cluster near optimal (amp COH � 0.76, phase COH �
14.13). Interestingly, in this case white noise (Fig. 8A) outper-
forms natural images (Fig. 8C) with higher VAFs (white noise:
raw VAF � 53.1%, exp VAF � 55.2%; natural images: raw
VAF � 43.4%, exp VAF � 50.1%) and more tightly clustered
phase coherence values (white noise: phase COH � 17.81, natu-
ral images: phase COH � 36.84). Amp COH, however, is better
predicted by natural images than by white noise, with values of
0.80 and 0.68, respectively.

Examining explainable VAFs over our sample population of
simple cells (Fig. 9A), it is apparent that on average short bars
yield the highest VAFs (exp VAF � 53%), followed by natural
images (exp VAF � 41%) and finally white noise (exp VAF �
19%). However the average amp COH (Fig. 9B) values are about
the same (�0.5) for all three stimulus types, indicating that ap-
proximately half of the response amplitude is predicted. Average

Figure 7. Example RF estimate as in Figure 5 for another neuron. All RF estimates have vertically oriented, flanking ON and OFF zones that show a phase reversal at later time lags. A, RF estimate
derived from white noise performs poorly with very low VAFs (raw VAF � 6.1%, exp VAF � 8.7%) and scattered amplitude/phase values (amp COH � 0.68, phase COH � 68.77). B, RF estimate
derived from short bars performs much better with higher VAFs (raw VAF � 21.8%, exp VAF � 32.9%) and amplitude/phase values that cluster loosely near optimal (amp COH � 0.74, phase
COH � 52.12). C, RF estimate from natural images at first glance performs poorly (raw VAF � 10.2%), but when a noise ceiling is calculated the explainable VAF (30.5%) is nearly the same as that
of short bars. Amplitude/phase coherence values show less clustering near optimal (amp COH � 0.69, phase COH � 67.55). For all three stimulus types, the power law nonlinearity is close to a
half-square, with an exponent ranging from 1.9 to 2.2. Act. Resp., Actual response; Pred. Resp., predicted response.
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phase COH (Fig. 9C), however, follows
similar trends as VAFs, with short bars
achieving the best average phase COH
(phase COH � 60.57), followed by natu-
ral images (phase COH � 66.38) and fi-
nally white noise (phase COH � 77.33).
These results would seem to suggest that
short bars are the best of these stimuli for
system identification, as they lead to mod-
els that better predict responses to inde-
pendently collected validation datasets.
However, a more important question is
how well the RF models’ predictive per-
formance can generalize to other types of
stimuli.

Predicting responses to other
broadband stimulus image ensembles
To assess the robustness of the estimated
RFs, each was used in model simulations to predict responses to
the other two stimulus types as well as to another ensemble of the
same stimulus used for its estimation. For example, a RF model
derived from white noise was used to predict responses to short
bars and natural images as well as to another ensemble of white
noise. Results are summarized in Figure 10, where each row
shows results for RF estimates derived from one of the three

stimulus types, and each column compares different stimulus
ensembles used in the predictions. Columns A and B compare the
like stimulus (i.e., the stimulus used to create the model) with an
unlike stimulus (i.e., one of the other types), and column C com-
pares the two unlike types of stimuli. For RF models derived from
white noise (top row, columns A and B), all points lie along the
horizontal axis, indicating that a white noise-derived RF can pre-

Figure 8. Example RF estimate as in Figure 5, for a neuron with a nonoriented RF. All RF estimates have a similar-looking, orientationally isotropic punctate structure with a clear phase reversal
at later time lags. A, White noise produces a very clear RF estimate with high predictive power (raw VAF � 53.1%, exp VAF � 55.2%) and amplitude/phase coherence values that tightly cluster near
optimal (amp COH � 0.68, phase COH � 17.81). B, RF estimate derived from short bars performs slightly better than white noise, with higher VAFs (raw VAF � 60.5%, exp VAF � 62.4%) and
amplitude/phase coherence values that also tightly cluster near optimal (amp COH � 0.76, phase COH � 14.13). C, RF estimate derived from natural images has the lower predictive power than
the other stimulus types; however, when compared to other simple cells the VAFs are high (raw VAF � 43.4%, exp VAF � 50.1%) with amplitude/phase coherence values that are clustered (amp
COH � 0.80, phase COH � 36.84). For all three stimulus types, the power law nonlinearity is close to a linear half-wave rectification, with an exponent ranging from 1.0 to 1.2. Act. Resp., Actual
response; Pred. Resp., predicted response.

A B C

Figure 9. Average VAFs and coherence values. Raw/explainable VAFs and amplitude/phase coherence values averaged across
73 simple cells. Error bars represent standard error. A, On average, short bars (SB) produce the highest VAFs, followed by natural
images (NI) and finally white noise (WN). This indicates that in general, short bars can better predict responses to an independently
collected validation dataset of the same stimulus type, while natural images perform reasonably well and white noise does quite
poorly. B, Average amplitude coherences are roughly equal (�0.5) across all stimulus types, indicating that predictions of neuro-
nal response amplitude are independent of the type of stimulus used for system identification. C, On average, short bars achieve
phase coherences closest to zero, followed by natural images and finally white noise. Unlike response amplitude, response timing
is dependent on the type of stimulus used for system identification.
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dict responses to another ensemble of white noise (although usu-
ally quite poorly) but fails entirely to predict responses to short
bars (column A) or natural images (column B). When the VAFs
for predictions of the two unlike types of stimuli (short bars and
natural images) are plotted against one another (column C), all
the points lie at the origin, indicating that a white noise-derived
RF performs equally poorly for both of the unlike stimuli.

For RF models derived from short bars (Fig. 10, middle row,
columns A and B), the points fall along a locus below the 1:1
equality line, indicating that a RF estimate derived from short
bars can, to a limited extent, predict responses to white noise
(column A) and natural images (column B) in a manner propor-
tionate to its predictive power for short bar responses. When
VAFs for predictions of the two unlike types of stimuli (white
noise and natural images) are plotted against one another (col-
umn C), points lie slightly above the 1:1 equality line, indicating
that a short bar-derived RF does a marginally better job at pre-
dicting responses to white noise than to natural images.

Natural image-derived RF models
(Fig. 10, bottom row, columns A and B)
produced scatter plots falling on a locus
close to the 1:1 equality line, indicating
that RF models derived from natural im-
ages do the best job of generalizing to
white noise (column A) and short bars
(column B). When VAFs for predictions
of the two unlike types of stimuli (white
noise and short bars) are plotted against
one another (column C), the points lie al-
most on the 1:1 equality line, indicating
that a natural image-derived RF does an
almost equally good job at predicting re-
sponses to short bars as to white noise.

The preceding results suggest that nat-
ural images yield RF models that are more
robust, i.e., their predictive power gener-
alizes better to other types of stimulus im-
age ensembles. But these results do not
necessarily indicate how well these models
generalize to more commonly used nar-
rowband visual stimuli, such as sinewave
gratings.

Predicting grating tuning curves for
spatial frequency and orientation
RF estimates derived from each of the
three stimulus types were used in model
simulations to predict spatial frequency
and orientation tuning curves for sin-
ewave gratings. Predicted tuning curves
were compared with actual tuning curves,
as measured with sinewave gratings on the
same neurons. The goodness of predic-
tion of the measured tuning curves was
quantified as VAF (see Materials and
Methods). Examples of actual spatial fre-
quency and orientation tuning curves,
overlaid with predicted tuning curves, are
shown in Figure 11 for the same four cells
as those in Figures 5– 8.

Figure 11A shows spatial frequency
and orientation response curves for the
same neuron as that in Figure 5. The spa-

tial frequency tuning curve is best predicted by a short bar-
derived RF (VAF � 83.0%), closely followed by natural images
(VAF � 79.8%) and finally white noise (VAF � 67.5%). The
short bar- and natural image-derived RF estimates both accu-
rately predict the optimal spatial frequency and response am-
plitude but underestimate the tuning bandwidth. The white
noise-derived RF accurately predicts the response amplitude but
underestimates the optimal spatial frequency and overestimates
the tuning bandwidth. For this cell’s orientation tuning, the nat-
ural image-derived RF replicates the actual tuning almost per-
fectly (VAF � 96.5%), followed by short bars (VAF � 88.9%) and
finally white noise (VAF � 66.0%). This cell’s direction selectiv-
ity was also predicted by all three, consistent with the systematic
phase progression across temporal lags that can be seen in the RF
estimates in Figure 5. Note the relatively good tuning curve pre-
dictive performance of the RF model from natural images, not-
withstanding its rather noisy-looking appearance (Fig. 5C). In
this example, all three stimulus types performed reasonably well

A B C

Figure 10. Generalization of predictive power to other stimulus ensembles. RF models derived from one stimulus type are used
to predict responses to other types of stimuli as well as the same type of stimulus used to estimate it. Each plotted point is the VAF
from predicted responses of model simulations using RF models derived from the different stimulus types. Diagonal line indicates
1:1 equality. For white noise (WN) (top row, columns A and B), all points lie along the horizontal axis, indicating that RF models
derived from white noise are only capable of predicting responses to another ensemble of white noise and fail to predict short bar
or natural image responses. When the responses to the two unlike types of stimuli (short bars and natural images) are plotted
against one another (column C), all points lie at the origin, indicating that a white noise-derived RF performs equally as poorly for
both of the unlike stimuli. For short bars (SB) (middle row, columns A and B), the points are closer to the 1:1 equality line, indicating
that RF models derived from short bars can, to some extent, predict responses to white noise and natural images. When the two
unlike types of stimuli (white noise and natural images) are plotted against one another (column C), points lie slightly above the 1:1
equality line, indicating that a short bar-derived RF does a marginally better job at predicting responses to white noise than to
natural images. For natural images (NI) (bottom row, columns A and B), the points are very close to the 1:1 equality line, indicating
that RF models derived from natural images do the best job of generalizing to white noise and short bars. When the two unlike
types of stimuli (white noise and short bars) are plotted against one another (column C), points lie nearly on the 1:1 equality line,
indicating that a natural image-derived RF does an almost equally good job at predicting responses to short bars as to white noise.
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at predicting spatial frequency and orien-
tation tuning curves, but this was not al-
ways the case.

For the neuron in Figure 11B (same
cell as that in Fig. 6), the spatial frequency
tuning curve is best estimated by a natural
image-derived RF (VAF � 62.8%) and
somewhat well by short bars (VAF �
43.9%), but quite poorly by white noise
(VAF � 8.3%). The natural image-
derived RF estimate better predicts the
neuron’s tuning bandwidth compared to
short bars, resulting in a better VAF. The
white noise-derived RF estimate once
again mispredicts the optimal spatial fre-
quency, leading to a low VAF. For this
neuron’s orientation tuning, a short bar-
derived RF best predicts the actual tuning
(VAF � 75.0%) followed by white noise
and natural images, which perform al-
most equally well (VAF � 59.7% and
57.3%, respectively). Note that the natural
image-derived RF is the only one that ac-
curately predicts the optimal orientation,
although unlike white noise and short
bars it fails to capture the narrow orienta-
tion bandwidth. All three predictions cap-
ture the strong direction selectivity in
accordance with the phase progression
across successive time lags, which is read-
ily evident in the RF estimates shown in
Figure 6.

The spatial frequency tuning curve for
the cell in Figure 11C (same neuron as that
in Fig. 7) is very well estimated from a
natural image-derived RF (VAF � 88.3%)
and reasonably well from short bars
(VAF � 62.3%), while white noise fails
completely to predict the actual tuning
(VAF � 1.0%). The short bar-derived RF
fails to capture the tuning bandwidth,
while the white noise-derived RF overes-
timates the optimal spatial frequency. For
this cell’s orientation tuning, a natural
image-derived RF replicates the actual
tuning almost perfectly (VAF � 92.3%),
followed by short bars (VAF � 58.7%)
and white noise (VAF � 44.9%). The
short bar-derived RF predicts the upper
lobe of the actual orientation tuning well,
but incorrectly predicts the direction se-
lectivity despite the lack of phase pro-
gression across time in the RF estimate
(Fig. 7B). The white noise-derived RF,
on the other hand, somewhat predicts
the nondirectionality but fails to predict
the optimal orientation and orientation bandwidth. Again,
note the excellent tuning curve predictive performance of the
RF model from natural images, regardless of its rather noisy-
looking appearance (Fig. 7C).

The neuron in Figure 11D is somewhat unusual for A18 in
that its selectivity for grating spatial frequency and orientation
are relatively low; however, this poor tuning is in accord with its

RF estimates (Fig. 8) that show little orientation and lack well-
formed, spatially antagonistic regions. The spatial frequency re-
sponse is very much better estimated by a natural image-derived
RF (VAF � 54.0%) as opposed to short bars (VAF � 9.2%) or
white noise (VAF � 5.7%), which both overestimate the optimal
spatial frequency and tuning bandwidth. Its orientation tuning is
also better predicted by a natural image-derived RF (VAF �

A

B

C

D

Figure 11. Example tuning curves. Actual and predicted spatial frequency and orientation tuning curves for four simple cells
(same neurons as those in Figs. 5– 8) using RF estimates derived from all three stimulus types. A, A short bar (SB)-derived RF
estimate most accurately predicts the actual spatial frequency tuning (VAF � 83.0%), while natural images (NI) perform nearly as
well (VAF � 79.8%), followed by white noise (WN) (VAF � 67.5%). Orientation tuning was replicated nearly perfectly using a
natural image-derived RF estimate (VAF� 96.5%), followed by short bars (VAF� 88.9%) and finally white noise (VAF� 66.0%).
This cell’s direction selectivity was also predicted by all three stimulus types. B, A natural image-derived RF estimate best predicts
the actual spatial frequency tuning (VAF � 62.8%), followed by short bars (VAF � 43.9%) and then white noise (VAF � 8.3%).
Orientation tuning however, is best predicted by a short bar-derived RF estimate (VAF � 75.0%), followed by white noise (VAF �
59.7%) and natural images (VAF � 57.3%), which perform nearly equally. All three stimulus types capture the strong direction
selectivity of this neuron. C, The spatial frequency tuning is very well predicted using a natural image-derived RF estimate (VAF �
88.3%) and reasonably well from short bars (VAF � 62.3%), while white noise fails entirely (VAF � 1.0%). Orientation tuning is
nearly perfectly predicted with a natural image-derived RF estimate (VAF � 92.3%), followed by short bars (VAF � 58.7%) and
then white noise (VAF � 44.9%). The nondirectionality of this neuron is predicted by natural images and somewhat by white
noise, but fails for short bars. D, A natural image-derived RF estimate is the only one that can reasonably predict the actual spatial
frequency tuning with a VAF � 54.0%, compared to short bars (VAF � 9.2%) and white noise (VAF � 5.7%). Orientation tuning,
on the other hand, can be reasonably predicted by a natural image (VAF � 50.9%) or short bar-derived (VAF � 44.8%) RF
estimate, while white noise fails entirely (VAF � 1.4%). All stimulus types capture this neuron’s lack of selectivity for orientation
and direction.
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50.9%), followed by short bars (VAF � 44.8%). Interestingly,
white noise failed entirely to predict the actual response curve
(VAF � 1.4%) despite the clean-looking RF estimate (Fig. 8A)
and good VAFs for validation data. This neuron is a particularly
good example of how clean-looking RF estimates and good VAFs
for validation data do not guarantee good predictive power for
other kinds of stimuli.

Figure 12 summarizes average VAFs between actual and pre-
dicted tuning curves for each of the three stimulus types. Across
the sample population of simple cells, estimated RFs derived
from natural images were best at predicting spatial frequency
responses, and white noise was the poorest (Fig. 12A). Orienta-
tion tuning responses were predicted about equally well by short
bars and natural images, with white noise again performing
poorly (Fig. 12 B).

Measurements of grating tuning curves are often made pri-
marily for the purpose of extracting characteristic parameters,
e.g., optimal values or bandwidths. To address this issue, pre-
dicted spatial frequency tuning curves were assessed on how ac-
curately they could be used to estimate a cell’s optimal spatial
frequency, tuning bandwidth, and response amplitude. For ori-
entation, predicted tuning curves were assessed on how well they
could provide a cell’s optimal orientation, orientation bias, opti-
mal direction, and direction bias.

Parameters of the spatial frequency tuning curves (i.e., opti-
mal spatial frequency, bandwidth, and response amplitude) esti-
mated from Gaussian curve fits (see Materials and Methods) are
summarized in Figure 13. Each row is for RF estimates derived
from one of the three stimulus types, and each column examines
a specific parameter of the tuning curve, i.e., optimal spatial fre-
quency (column A), bandwidth (column B), and response am-
plitude (column C). The scatter plots show the predicted
parameter values plotted against the actual values for all neurons
in our sample. The histograms in column A are measured as the
perpendicular distance to the 1:1 equality line. In columns B and
C, the histograms indicate the distribution of prediction errors
(residuals). For all parameters of the spatial frequency tuning
curves examined, natural image-derived RFs were the best pre-
dictors as they produced the least amount of deviation from the
1:1 equality line, and histograms with more tightly tuned distri-
butions (bottom row, columns A–C), while white noise yielded
the worst predictors (top row, columns A–C). This is further
confirmed by examining the mean and standard deviations of the
histograms (shown right of histograms), which are measures of

accuracy and precision, respectively. Natural image-derived RF
estimates lead to spatial frequency tuning parameters with mean
and standard deviation values closest to zero (i.e., highest degree
of accuracy and precision), while short bars result in intermediate
values and white noise to values furthest from zero. Note one
seemingly interesting result, that white noise-derived RF esti-
mates lead to optimal spatial frequency predictions that are
highly biased toward higher values (top row, column A).

Parameters of orientation tuning curves (i.e., optimal orien-
tation, orientation bias, optimal direction, and direction bias)
estimated from vector-based summation (see Materials and
Methods) are summarized in Figures 14 and 15. Figure 14 exam-
ines optimal orientation (column A) and orientation bias (col-
umn B) where each row is for RF estimates derived from one of
the three stimulus types. The scatter plots show predicted param-
eter values plotted against the actual values for all neurons in our
sample, with the histograms below indicating the distribution of
prediction errors (residuals). Optimal orientation values range
between 0° and 180°, and orientation bias values range between 0
and 1 (dimensionless). Optimal orientation (column A) is best
predicted using estimated RFs derived from short bars, as there is
less deviation from the 1:1 equality line and the residual histo-
gram is tightly tuned with mean and standard deviation values
closest to zero. Natural image-derived RFs perform very similarly
to short bars, although the residual histogram is somewhat more
broadly spread. White noise performs poorly with a broad resid-
ual histogram. Orientation bias (column B) is best predicted us-
ing estimated RFs derived from natural images, as there is less
deviation from the 1:1 equality line and the residual histogram is
tightly tuned with a standard deviation value closest to zero. Note
that since many points in the natural image scatter plot (bottom
row, column B) fall below the 1:1 equality line, the mean of the
residual histogram is slightly skewed to the right, indicating a
tendency to underestimate orientation selectivity. Short bar-
derived RFs also perform reasonably well, although again they
somewhat underestimate orientation selectivity. Once again,
white noise-derived RFs perform poorly, with a residual histo-
gram that is spread across many bins.

Figure 15 examines optimal direction (column A) and direc-
tion bias (column B), where each row is for RF estimates derived
from one of the three stimulus types. The scatter plots show the
predicted parameter values plotted against the actual values for
all neurons in our sample, with the histogram below indicating
the distribution of prediction errors (residuals). Optimal direc-
tion values range between 0° and 360°, and direction bias values
range between 0 and 1 (dimensionless). Optimal direction (col-
umn A) is predicted equally well using estimated RFs derived
from short bars or natural images, as both have scatter plots with
points that lie close to the 1:1 equality line and residual histo-
grams with similar mean and standard deviation values. White
noise-derived RFs once again do a poor job, with predictions of
optimal direction that are highly scattered and a residual histo-
gram with high standard deviation. Direction bias (column B) is
best predicted by using estimated RFs derived from natural im-
ages, followed by short bars that perform reasonably well and
finally by white noise that performs poorly. Natural images have
the least amount of deviation from the 1:1 equality line and a
residual histogram that is tightly tuned with a standard deviation
value closest to zero.

Discussion
We compared the utility of three types of broadband stimuli
(white noise, short bars, and natural images) to provide spatio-

A B

Figure 12. Average VAFs for tuning curves. Average VAFs for predictions of grating spatial
frequency and orientation tuning curves. Error bars represent standard error. A, RF models
derived from natural images (NI) better predict spatial frequency tuning curves, followed by
short bars (SB) and white noise (WN). B, RF models derived from short bars better predict
orientation tuning curves, although natural images perform nearly equally (within the error
margin) while white noise again performs poorly.

Talebi and Baker • Receptive Fields from Natural versus Synthetic Stimuli J. Neurosci., February 1, 2012 • 32(5):1560 –1576 • 1571



A B C

Figure 13. Prediction of spatial frequency tuning parameters. Actual and predicted values of optimal spatial frequency (SF) (column A), bandwidth (BW) (column B), and normalized
response amplitude (Amp) (column C) from Gaussian curve fits to spatial frequency tuning curves. Each row is for RF models derived from the three stimulus types (white noise, short bars,
and natural images). Scatter plots show predicted values plotted against actual values, and the histograms below indicate the distribution of prediction errors. All spatial frequency
parameters (columns A–C) are best predicted by natural image-derived RF estimates, followed by short bars and finally white noise. In all cases, natural images have the least amount
of deviation from the 1:1 equality line (diagonal) and least spread across histogram bins. The means (MN) and standard deviations (SD) of the histograms confirm that natural
image-derived RF estimates lead to spatial frequency tuning parameters with the highest degree of accuracy and precision (i.e., mean and standard deviations closest to zero), followed
by short bars and finally white noise.
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temporal RF models with high predictive
ability for responses to other kinds of
stimuli. Dense white noise stimuli often
elicited poor responses and RF estimates,
while sparsely structured short bars and
complex natural image stimuli were more
successful in driving A18 neurons and
producing clear RF estimates. The RF
models derived from short bar and natural
image stimuli were able to predict responses
relatively well, yielding explainable VAFs of
�40–50%. Models from all three types of
stimuli could more reliably predict the tim-
ing of a response than its amplitude. Natural
image-derived RF models, however, were
the most robust at predicting responses to
other types of broadband stimuli than those
used for their estimation, and also per-
formed well in predicting tuning curves for
sinewave gratings.

Comparison of stimuli
Wu et al. (2006) delineated three major
classes of stimuli typically used in visual
system identification: white noise, para-
metric noise (i.e., stimuli with random se-
ries of structured patterns such as bars,
sinusoidal gratings, sum of sinusoids),
and natural images. Although many stud-
ies have used one of these classes of stimuli
(Jones and Palmer, 1987; Ringach et al.,
1997; Smyth et al., 2003) or compared two
of them (David et al., 2004; Felsen et al.,
2005; Yeh et al., 2009), to our knowledge
this work is novel in its comparison of ex-
amples from all three classes.

The markedly poor performance of
white noise would seem contrary to the
numerous successful visual system identi-
fication studies performed using this
stimulus (Ringach and Shapley, 2004).
However, many of these studies were in
retina (Yasui et al., 1979; Hida and Naka,
1982) or LGN (Reid and Shapley, 1992,
2002), where receptive field properties are
relatively simple. In A17, the best white
noise responses have been reported to be
in layer 4 (Alonso et al., 2001), which is a
principal thalamorecipent target. The
poor performance of white noise in A18
may be related to the greater complexity
of receptive fields, perhaps analogous to a
similar comparison between V1 and V2 in
the primate (Willmore et al., 2010).

A seemingly more appropriate stimu-
lus for system identification would be
short bars, since our results showed them
to produce the clearest-looking RF esti-
mates with the best predictive ability (Fig.
9). Short bar-derived RFs were also more
successful at predicting orientation tun-
ing; however, this result might not be sur-
prising due to the necessity of selecting

Figure 14. Prediction of orientation tuning parameters. Actual and predicted values of optimal orientation (column A) and
orientation bias (column B) from vector-based summations of orientation tuning curves. Each row is for RF models derived from
one of the three stimulus types (white noise, short bars, and natural images). Scatter plots show predicted values plotted against
actual values, and the histograms below indicate the distribution of prediction errors. Optimal orientation values range between 0°
and 180° and orientation bias values range between 0 and 1 (dimensionless), where values greater than 0.1 indicate selectivity.
Optimal orientation (column A) is best predicted by short bar-derived RF estimates, followed by natural images and finally white
noise. Short bars have the least deviation of points from the 1:1 equality line (diagonal) and a residual histogram that is tightly
tuned with mean (MN) and standard deviation (SD) values closest to zero when compared to the other two stimuli. Orientation bias
(column B) is best predicted by natural image-derived RF estimates, followed by short bars and finally white noise. Natural images
have points that are closer to the 1:1 equality line and a residual histogram that is tightly tuned with a standard deviation value that
is closest to zero when compared to the other two stimuli.
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short bar ensembles whose orientations
and bar widths were matched to each neu-
ron’s measured parameters. Furthermore,
our results indicate that RF models de-
rived from short bars have limited capac-
ity in predicting responses to other types
of broadband stimuli.

Natural images produced RF models
with reasonable VAFs, but more impor-
tantly they were the most robust at predict-
ing responses to other types of broadband
stimuli (Fig. 10). They also performed very
well in prediction of sinewave grating re-
sponses. It is unclear from these analyses
whether the apparently greater “noise” in
the natural image RF estimates is due to
variance in the estimates themselves (aris-
ing, for example, from somewhat weaker re-
sponses) or if these estimates depict genuine
fine-grain RF structure that plays a con-
structive role in robust predictive power—
this will be a matter of future investigation.

From these results we cannot defini-
tively say which aspects of the different
broadband stimuli led to their varying
utility in system identification; they were
selected because of their common use in
visual neurophysiology and differed from
one another in various ways (e.g., spatial
spectrum, RMS energy, and higher-order
image statistics). We conjecture that nat-
ural images performed best due to their
sparseness and richer spatial features. Vi-
sual neurons presumably evolved to effi-
ciently encode the rich spatial structure of
natural scenes whose image statistics are a
highly constrained manifold of the space
of possible images (Simoncelli and Ol-
shausen, 2001). One key feature of natural
images is their sparseness, which may pro-
vide an important constraint for efficient
coding (Field, 1994). This sparseness
arises from a number of higher-order sta-
tistics of natural images, including their
pronounced contrast modulations (John-
son and Baker, 2004), abrupt edges with
local phase alignments across spatial fre-
quencies (Field, 1993; Olshausen and
Field, 1996), and local correlations of
luminance and contrast (Johnson and
Baker, 2004; Mante et al., 2005; Frazor
and Geisler, 2006).

System identification
Most early efforts at neural system identi-
fication only attempted to estimate RFs
but did not assess them by measuring how
well they could account for responses to
arbitrary stimuli. An ultimate measure of
the accuracy of a RF model is how well it
can predict responses, particularly to
stimuli that were not used for estimation
(Wu et al., 2006). Only a few studies have

Figure 15. Prediction of direction tuning parameters. Actual and predicted values of optimal direction (column A) and direction bias
(column B) from vector-based summations of orientation tuning curves. Each row is for RF models derived from one of the three stimulus
types (white noise, short bars, and natural images). Scatter plots show predicted values plotted against actual values, and the histograms
below indicate the distribution of prediction errors. Optimal direction values range between 0° and 360° and direction bias values range
between 0 and 1 (dimensionless), where values greater than 0.1 indicate selectivity. Optimal direction (column A) is equally well predicted
by short bar and natural image-derived RF estimates. Both scatter plots have points that lie close to the 1:1 equality line (diagonal) and
residual histograms that are tightly tuned, with similar mean (MN) and standard deviation (SD) values. White noise-derived RF estimates
perform poorly, with predictions of optimal direction that are very scattered and a residual histogram with high standard deviation.
Direction bias (column B) is best predicted by natural image-derived RF estimates, closely followed by short bars and finally white noise.
Natural image results have the least amount of deviation from the 1:1 equality line and a residual histogram that is tightly tuned with a
standard deviation value closest to zero when compared to the other two stimuli.
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employed a rigorous procedure with independent datasets to fit
model parameters, minimize overfitting, and evaluate predic-
tions (Theunissen et al., 2001; David et al., 2004; David and Gal-
lant, 2005; Willmore et al., 2010).

The predictive power of a model is best assessed using mea-
sures that take into account sampling limitations and experimen-
tal noise (David and Gallant, 2005). Although several types of
measures exist (Hsu et al., 2004; Mante et al., 2008), we have
chosen to use explainable VAF that we computed through a noise
ceiling analysis (David and Gallant, 2005). Explainable VAF helps
separate how much of the prediction discrepancy is due to re-
sponse noise versus model insufficiency. Although powerful, it is
important to note that explainable VAFs may sometimes be un-
derestimated when there are insufficient repetitions or unique
presentations of a stimulus image ensemble, such that the noise
ceiling curve does not approach a well-defined asymptote.

Previous studies using approaches similar to ours with natural
images have at best accounted for explainable variances of circa
40% (Carandini et al., 2005), comparable to our results and well
below the theoretical ideal of 100%. This might be partly due to
effects of nonstationarity and the high degree of response vari-
ability of cortical neurons, although the latter should be largely
discounted by the noise ceiling analysis. Most importantly, these
neurons exhibit nonlinear phenomena that are not adequately
captured by an LN model, such as gain control (Heeger, 1992),
surround modulation (Tanaka and Ohzawa, 2009), second-order
responses (Baker and Mareschal, 2001), or cross-orientation inhibi-
tion (Bonds, 1989). By incorporating more elaborate model archi-
tectures that can produce these nonlinear response properties, it may
be possible to develop more robust models with higher predictive
ability.

Many studies have demonstrated that estimated RF models
could predict optimal grating responses in A17 (Movshon et al.,
1978; Jones and Palmer, 1987; Tadmor and Tolhurst, 1989;
DeAngelis et al., 1993b; Gardner et al., 1999; Smyth et al., 2003).
Furthermore, other studies have reported that RF estimates gen-
erated using stimuli from a specific class better predict responses
within than across stimulus classes (Citron et al., 1988; Golomb et
al., 1994; Lau et al., 2002; David et al., 2004). Our results showed
that white noise and short bar RF estimates perform less well at
predicting responses to other broadband stimuli. RF estimates
derived from natural stimuli, on the other hand, were much bet-
ter at predicting responses across stimulus classes.

Future directions
A promising extension to this system identification approach
would be to apply nonlinear transformations to the stimulus be-
fore the GLM regression (Willmore and Smyth, 2003). Such a
basis set transformation (Mitchell, 1997; Bishop, 2006) or “pre-
processing” has been used to characterize nonlinear V1/V2 neu-
rons (Theunissen et al., 2001; Chen et al., 2007; Willmore et al.,
2010). The basis set could consist of wavelets such as Gabor func-
tions or filters that mimic neural RFs at earlier processing stages.
This approach should enable the characterization of many differ-
ent types of neuronal nonlinearities (e.g., complex cells, nonlin-
ear subunits).

It might be possible, and perhaps advantageous, to design
“natural-like” synthetic stimuli that perform as well or even bet-
ter than natural images. However, natural images are inherently
complex, and it is not straightforward to specify or analyze what
statistical relationships make them critically different from other
random stimuli. But if this problem can be solved, then by repli-
cating important higher-order structural statistics it may be pos-

sible to find combinations of features that can mimic natural
images (Portilla and Simoncelli, 2000).

Conclusion
The main goal of this study was to evaluate commonly used syn-
thetic and natural stimuli for use with a newer generation of
system identification methods to find RF estimates with strong
predictive power that generalize well to other stimulus types. Our
results suggest natural images to be a strong candidate for achiev-
ing this objective. In addition to the strengths of natural images in
RF estimation and in creating robust RF models, they also do not
require prior knowledge of the cell’s optimal tuning properties.
This makes natural image stimuli, together with regularized GLM
methods of system identification, ideal tools for estimating RF
models in brain areas beyond striate cortex, as well as for rapidly
characterizing the tuning properties of multiple neurons at one
time (e.g., multi-electrode recordings, two-photon imaging).
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Einhäuser W, Kayser C, König P, Körding KP (2002) Learning the invari-
ance properties of complex cells from their responses to natural stimuli.
Eur J Neurosci 15:475– 486.

Felsen G, Dan Y (2005) A natural approach to studying vision. Nat Neurosci
8:1643–1646.

Felsen G, Touryan J, Han F, Dan Y (2005) Cortical sensitivity to visual fea-
tures in natural scenes. PLoS Biol 3:e342.

Fernald R, Chase R (1971) An improved method for plotting retinal land-
marks and focusing the eyes. Vis Res 11:95–96.

Field DJ (1993) Scale-invariance and self-similar ‘wavelet’ transforms: an
analysis of natural scenes and mammalian visual systems. In: Wavelets,
Fractals, and Fourier Transforms (Farge M, Hunt J, Vascillicos C, eds), pp
151–193. Oxford: Oxford UP.

Field DJ (1994) What is the goal of sensory coding? Neural Comput
6:559 – 601.

Talebi and Baker • Receptive Fields from Natural versus Synthetic Stimuli J. Neurosci., February 1, 2012 • 32(5):1560 –1576 • 1575



Frazor RA, Geisler WS (2006) Local luminance and contrast in natural im-
ages. Vision Res 46:1585–1598.

Gardner JL, Anzai A, Ohzawa I, Freeman RD (1999) Linear and nonlinear
contributions to orientation tuning of simple cells in the cat’s striate
cortex. Vis Neurosci 16:1115–1121.

Golomb D, Kleinfeld D, Reid RC, Shapley RM, Shraiman BI (1994) On
temporal codes and the spatiotemporal response of neurons in the lateral
geniculate nucleus. J Neurophysiol 72:2990 –3003.

Hagiwara K (2002) Regularization learning, early stopping and biased esti-
mator. Neurocomputing 48:937–955.

Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis
Neurosci 9:181–197.
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